首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A preliminary study of the diamagnetic (μd) and the paramagnetic (Mu T ) states in a synthetic 13C diamond has been performed using the Transverse Field Muon Spin Rotation method. This system could be used to verify the quantum diffusion behaviour observed before, however, with a more reliable extraction of the hopping rate. The results were obtained in an applied magnetic field of 7.5 mT and at sample temperatures of 10 K, 100 K and 200 K. The prompt fraction, f, of the μd state remains constant at 22(5)% in the range 10–200 K; that of the Mu T state increases from 53(10)% at 10 K to 78(10)% at 200 K. The fractions of the two states add to 100% at 200 K, suggesting non-population of the bond-centred state, MuBC, which is often observed in other diamond samples. The μd state has a spin relaxation rate of 0.20(5) μs−1, in contrast to the zero value obtained in type II diamond samples. This indicates appreciable interaction of the μd state with the 13C atoms. The Mu T state has a large spin relaxation rate ranging from 3.0(5) μs−1 at 10 K to 7.0(5) μs−1 at 200 K, consistent with values obtained in diamond samples with defects. This work is part of ongoing studies of muon/muonium-defect interactions in diamonds. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
The ionization of muonium centers in Si and GaAs have been studied using radio frequency (RF) resonant techniques. In Si all three muonic centers are detectable by RF. No evidence was found for delayed Mu and Mu* states at any temperature. However, our results on the diamagnetic final state (μ f + ) show that it is composed of prompt fractions (as seen by conventional μSR) and delayed fractions arising from the ionization of Mu* and Mu. We observe a full μ f + fraction at 317 K when the Mu relaxation rate is above 10 μs−1. GaAs differs from the situation in Si in that we observed only a partial conversion of Mu* and Mu to a μ+ final state up to 310 K in spite of the fact that the transverse field relaxation rates become very high at 150 and 250 K respectively.  相似文献   

3.
Transverse‐field μSR spectroscopy was used to study the behaviour of positive muons implanted in polycrystalline chemical‐vapour‐deposited (CVD) diamond. Measurements were made at sample temperatures of 10 K, 100 K, and 300 K at a magnetic field of 7.5 mT to study the behaviour of the “normal” (isotropic) muonium state (MuT) and the diamagnetic states (μd), and at 10 K and 300 K at the so‐called “magic field” of 407.25 mT to study the anomalous (bond‐centred) muonium state (MuBC) and μd. The absolute fractions of the muonium states in the CVD diamond are observed to be close to those in high‐quality natural type‐IIa single crystal diamond. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Standard μSR experiments in diamond have shown that the relative sign of the hyperfine parameters of the anisotropic Mu* state is negative (A /A <0). We report an experimental determination of theabsolute sign of the Mu* hyperfine parameters by studying the transferred muon polarization during the thermally-activated transition from the isotropic Mu state to Mu*. The results demonstrate that the isotropic part of the Mu* hyperfine interaction is negative. In a nitrogen-poor diamond, both the Mu disappearance rate and the enhancement of the Mu* signals are well-described by a single Arrhenius law.  相似文献   

5.
The addition reaction Mu+NO+M→MuNO+M and the spin exchange reaction Mu(↑) +MO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λc) demostrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined ask 0,Mu =(1.10±0.25)×10−32 cm6 molecules−2 s−1, almost 4 times smaller than the corresponding H atom reactionk 0,H=3.90×10−32 cm6 molecules−2 s−1 [I.M. Campbell et al., J. Chem. Soc. Faraday Trans. 1.71 (1975) 2097]. The average value of the spin exchange rate constants in the 2.5–58 atm pressure range,k SE=(3.16±0.06)×10−10 cm3 molecule−1 s−1, is in good agreement with previous values obtained by transverse field μSR [D.G. Fleming et al., J. Chem. Phys. 73 (1980) 2751].  相似文献   

6.
The thermal conductivity of diamond-paraffin wax composites prepared by infiltration of a hydrocarbon binder with the thermal conductivity λ m = 0.2 W m−1 K−1 into a dense bed of diamond particles (λ f ∼ 1500 W m−1 K−1) with sizes of 400 and 180 μm has been investigated. The calculations using universally accepted models considering isolated inclusions in a matrix have demonstrated that the best agreement with the measured values of the thermal conductivity of the composite λ = 10–12 W m−1 K−1 is achieved with the use of the differential effective medium model, the Maxwell mean field scheme gives a very underestimated calculated value of λ, and the effective medium theory leads to a very overestimated value. An agreement between the calculation and the experiment can be provided by constructing thermal conductivity functions. The calculation of the thermal conductivity at the percolation threshold has shown that the experimental thermal conductivity of the composites is higher than this critical value. It has been established that, for the composites with closely packed diamond particles (the volume fraction is ∼0.63 for a monodisperse binder), the use of the isolated particle model (Hasselman-Johnson and differential effective medium models) for calculating the thermal conductivity is not quite correct, because the model does not take into account the percolation component of the thermal conductivity. In particular, this holds true for the calculation of the heat conductance of diamond-matrix interfaces in diamond-metal composites with a high thermal conductivity.  相似文献   

7.
The interaction of three common herbicides, paraquat, acifluorfen and alachlor, with spinach chloroplast photosystem II (PS II) was investigated by measuring1H nuclear magnetic resonance spin-lattice relaxation rates, transient nuclear Overhauser effect (NOE) and NOE spectroscopy (NOESY) spectra. Binding to PS II was detected by (i) the enhancement of single-selective relaxation rates and (ii) the decrease in the optimal mixing time providing maximal cross-peak intensity in NOESY spectra. Titration of relaxation enhancements was used to calculate the dissociation constants (K d) from the bound state for paraquat (K d = 292 ± 71 μM−1) and acifluorfen (K d = 311 ± 58 μM−1). A similarK d was apparent for alachlor. Double-selective relaxation rates allowed the isolation of dipolar relaxation terms between selected proton pairs wherefrom dynamic features of the bound state were evaluated. In all cases the motional correlation time of bound herbicide (τc = 0.1−0.4 ns at 300 K) was found two orders of magnitude slower than in the free-solution state. In the case of alachlor the E and Z isomers were observed to bind differently to PS II and a change in conformation could be hypothesized.  相似文献   

8.
Zero-field longitudinal muon-spin-relaxation (μSR) experiments have been performed on single crystals of pseudo-brookite (Fe2xTil+x O 5; x=0.25), an anisotropic spin-glass system. The spinglass temperature (Tg) is determined to be 44.0±0.5K. Above Tg, a distinct exponential muon-spin-relaxation rate (λ) is observed, while below Tg a square-root exponential decay is seen, indicating fast spin fluctuations in the ‘frozen’ state. Near 8K, a maximum in λ is observed, which is due to transverse spin ordering at these low temperatures. Even near Tg, λ is very low (<1 μs−1), likely due to a well-defined muon-oxygen state in the single crystals. The sharp λ-increase (with decreasing temperatures) above Tg allows a comparison between spinfreezing models like the Vogel-Fulcher law and a power law. The results of these initial measurements indicate that dynamic (and static) magnetism in oxide spin glasses can be directly monitored through μSR.  相似文献   

9.
The effect of the surface of diamond on atomic, electronic, and spin properties of diamond nanocrystals containing single nitrogen-vacancy defects ([NV] centers) is studied. The surface was modeled with clusters C33H30[NV], C66H72[NV], which were constructed based on bulk clusters C33H36[NV] and C69H84[NV], respectively. In all cases, clusters in the triplet state S = 1 are considered with the cluster charge being −1. The geometric structure of clusters is optimized using the principle of minimization of the total energy of the system; then, the electronic and spin characteristics of clusters are calculated by the density functional theory. The isotropic and anisotropic hyperfine interaction constants of the electron spin of the NV center with the nuclear spin of the nitrogen atom and 13C atoms located at different sites in the cluster are calculated. It is found that, in contrast to bulk clusters with [NV]-centers in which the spin density is mainly localized at the three carbon atoms that are the nearest neighbors of the vacancy of the center, upon arrangement of the NV center in the immediate proximity to the surface, the spin density is redistributed such that it is mainly localized at the three carbon atoms that are the nearest neighbors of the nitrogen atom of the center and at C atoms that form the first atomic layer of the (111) surface of the nanocrystal.  相似文献   

10.
During 25 years pioneering μCF experiments were performed at PSI. After initial study of the Wolfenstein–Gershtein effect in H/D, an intense research program on dμd fusion led to the early discovery of resonant dμd formation at low temperature and to the first direct observation of μd spin flip. With the Gatchina ionisation chamber absolute precisions of ∼1% on the determination of dμd formation and spin flip rates were recently obtained in good agreement with the theory. In a very large effort the highly resonant dμt fusion cycle was investigated. Record cycle rates up to 2×108 s−1 and yields up to 124 fusions per muon were measured. By slope analysis and by direct observation, effective sticking ω s = (0.505 ± 0.029)% is the final PSI result. Clear experimental evidence of large epithermal resonances in D/T and H/D/T mixtures was found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Using a generalized Hubbard Hamiltonian, many-electron wavefunctions of negatively charged (NV) and neutral nitrogen-vacancy (NV0) centers in diamond were calculated. We report the effect of symmetric relaxation of surrounding atoms on the spin density, calculated from the many electron wavefunctions in the ground and excited states. We evaluated the error, that, arises in estimation of spin density when lattice relaxation effect is neglected in Electron Paramagnetic Resonance experiment and showed that the ground state spin density distribution is accessible in outward relaxations. The computed oscillator strengths give a higher efficiency for the 1.945 eV photoluminescence (PL) line of NV with respect to 2.156 eV PL line of NV0 which agrees well with experiment. This result is explained based on the largest the ground state spin among available values for the NV with respect to NV0. The transition probability between degenerate ground and excited states slightly depends on the S z value. Finally, we report on the electronic configurations which contribute to the ground and excited states and discuss the population variation of electronic configurations with relaxation.  相似文献   

12.
Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a single crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu* state in diamond and silicon.  相似文献   

13.
The muon-catalyzed fusion (μCF) process in tritium was studied by the μCF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the μCF cycle were determined: the ttμ muonic molecule formation rate λ ttμ = 2.84(0.32) μs−1, the ttμ fusion reaction rate λ f = 15.6(2.0) μs−1, and the probability of muon sticking to helium ω tt = 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method. The article is published in the original.  相似文献   

14.
Hillier  A. D.  Preston  J. M.  Stewart  J. R.  Cywinski  R. 《Hyperfine Interactions》2001,136(3-8):313-319
Zero field μSR has been used to probe rare earth spin dynamics in the magnetic superconductors, Y1−x Er x Ni2B2C. The muon spin relaxation function is stretched exponential, exp (−(λt)β), in form, as usually found for spin glass systems above the glass temperature. However, the Y1−x Er x Ni2B2C compounds show no evidence of coexisting superconducting and static spin glass ground states even at concentrations below the critical value (x=0.6) for long range antiferromagnetic order. The temperature dependence of both the muon spin relaxation rate λ and the exponent β suggests that Er spin dynamics change significantly at the superconducting transition temperature. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
Machi  I.Z.  Connell  S.H.  Major  J.  Smallman  C.G.  Sellschop  J.P.F.  Bharuth-Ram  K.  Maclear  R.D.  Doyle  B.P.  Butler  J.E.  Scheuermann  R.  Seeger  A. 《Hyperfine Interactions》1999,120(1-8):585-589
This work reports on the promptly forming fraction and the spin relaxation rate of the isotropic muonium (MuT) component in p-type semi-conducting diamond, measured under the condition of illumination. The data are the first such investigations for diamond. A broad band illumination with wavelengths ranging from 0.5 μm to 3 μm was obtained from a Xenon lamp. The energy of the photons was sufficient to excite electrons from the valence band to the 0.28 ppm boron impurity band (0.37 eV). The Transverse Field Muon Spin Rotation (TF-μSR) measurements were conducted as a function of temperature, ranging from 5 K to 300 K. An illumination effect at temperatures below 100 K is observed. It is not yet clear from these data whether the effect is due to Mut scattering off delocalized holes, which are removed by illumination or whether there is prompt trapping of Mut at boron impurities (passivation) which is affected by illumination. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A composite material with a high thermal conductivity is obtained by capillary infiltration of copper into a bed of diamond particles of 400 μm size, the particles having been pre-coated with tungsten. The measured thermal conductivity of the composite decreases from 910 to 480 W m−1 K−1 when the coating thickness is increased from 110 to 470 nm. Calculations of the filler/matrix thermal boundary resistance R and the thermal conductivity of the coating layer λ i using differential effective medium, Lichtenecker’s and Hashin’s models give similar numerical values of R and λ i ≈ 1.5 W m−1 K−1. The minimal thickness of the coating h ∼ 100 nm necessary for ensuring production of a composite while maximizing its thermal conductivity, is of the same order as the free path of the heat carriers in diamond (phonons) and in copper (electrons). The heat conductance of the diamond/tungsten carbide coating/copper interface when h is of this thickness is estimated as (0.8–1) × 108 W m−2 K−1 and is at the upper level of values characteristic for perfect dielectric/metal boundaries.  相似文献   

17.
Experiments on the study of the muon catalyzed fusion (μCF) process in a double D/T mixture of hydrogen isotopes in the temperature range 300–800 K at densities 0.3–0.5 LHD are performed at the JINR phasotron. The values of the effective μCF parameters (cycling rate λ c , neutron yield Y n , muon losses w) are obtained. Tentative dtμ-molecule formation rates on D2 and DT molecules (λ dtμ−d and λ dtμ−t ) are obtained for different mixture temperatures and densities. The results obtained show that λ dtμ−t increases with temperature, but its value is smaller than theoretical predictions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
On the basis of elementary symmetry arguments it is shown that (1) if in classical mechanics there exists a quantity λ+Σiμiυi+1/2νυ 2 that is conserved, where λ,μ i, andν are particle parameters, then theμ i andν are all proportional to a single parameterμ and the quantityiBiμυi+C(λ+ 1/2Dμυ 2), whereDν/μ, is conserved for all values ofA, B i, andC; (2) if in relativistic mechanics there exists a quantity λ+Σiμiυi[1−(υ 2/c 2)]−1/2+νc[1−(υ 2/c 2)]−1/2 that is conserved, then theμ i andν are all proportional to a single parameterμ and the quantityAλ+ΣiBiμνi[1−(υ 2/c 2)]−1/2+Cμc [1−(υ 2/c 2)]−1/2 is conserved for all values ofA, B i, andC.  相似文献   

19.
胡欣  刘东奇  潘新宇 《中国物理 B》2011,20(11):117801-117801
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host 14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the 14N nuclear spins lead to a triplet splitting of the transition between ground state (ms =0) and excited state (ms =1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.  相似文献   

20.
D P Ahalpara  K H Bhatt 《Pramana》1978,11(1):35-37
The separation betweenT=0 andT=1 centroids of the empirical effective interaction is fairly large for the (d 3 2/−1 f 7/2)JT particle-hole interaction as compared to nearby (f 7/2)2 JT and (d 5/2)2 JT particle-particle interactions. This interesting feature of the empirical effective interaction is shown to arise as a consequence of renormalization of the effective interaction as one truncates the configuration space from (sd)−1(fp)1 to (d 3 2/−1 f 7/2) and from (fp)2 and (sd)2 configurations to (f 7/2)2 and (d 5/2)2 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号