首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We report on transverse field muon spin rotation measurements on a nitrogen-rich type Ia diamond, both before and after the conversion of some of the aggregated nitrogen centres to nitrogen-vacancy complexes known as H2/H3-centres. The prompt fractions f and the spin relaxation rates λ were determined for the diamagnetic (μd) and the paramagnetic (MuT) states in the temperature range 10–300 K. The production of the nitrogen-vacancy complexes had little effect on the parameters of the MuT state for which f and λ remained unchanged at approximately 30% and 4 μs−1, respectively. For the μd state, on the other hand, the formation of the H2/H3-centres resulted in an increase of the prompt fraction from 10(2)% to 20(3)%, and (for the first time) the spin relaxation rate showed a non-zero value of 0.020(3) μs−1. These results show evidence of strong μd interactions with the nitrogen-vacancy complexes in diamond, and suggest a more complex structure for this state than a bare μ+. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
Transverse‐field μSR spectroscopy was used to study the behaviour of positive muons implanted in polycrystalline chemical‐vapour‐deposited (CVD) diamond. Measurements were made at sample temperatures of 10 K, 100 K, and 300 K at a magnetic field of 7.5 mT to study the behaviour of the “normal” (isotropic) muonium state (MuT) and the diamagnetic states (μd), and at 10 K and 300 K at the so‐called “magic field” of 407.25 mT to study the anomalous (bond‐centred) muonium state (MuBC) and μd. The absolute fractions of the muonium states in the CVD diamond are observed to be close to those in high‐quality natural type‐IIa single crystal diamond. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The ionization of muonium centers in Si and GaAs have been studied using radio frequency (RF) resonant techniques. In Si all three muonic centers are detectable by RF. No evidence was found for delayed Mu and Mu* states at any temperature. However, our results on the diamagnetic final state (μ f + ) show that it is composed of prompt fractions (as seen by conventional μSR) and delayed fractions arising from the ionization of Mu* and Mu. We observe a full μ f + fraction at 317 K when the Mu relaxation rate is above 10 μs−1. GaAs differs from the situation in Si in that we observed only a partial conversion of Mu* and Mu to a μ+ final state up to 310 K in spite of the fact that the transverse field relaxation rates become very high at 150 and 250 K respectively.  相似文献   

4.
Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a single crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu* state in diamond and silicon.  相似文献   

5.
Standard μSR experiments in diamond have shown that the relative sign of the hyperfine parameters of the anisotropic Mu* state is negative (A /A <0). We report an experimental determination of theabsolute sign of the Mu* hyperfine parameters by studying the transferred muon polarization during the thermally-activated transition from the isotropic Mu state to Mu*. The results demonstrate that the isotropic part of the Mu* hyperfine interaction is negative. In a nitrogen-poor diamond, both the Mu disappearance rate and the enhancement of the Mu* signals are well-described by a single Arrhenius law.  相似文献   

6.
A small fraction of implanted muons exists as a paramagnetic state (presumably MuBC 0, muonium at the Si—Si bond center) in heavily Sb‐doped Si (n-type, [Sb]\ \simeq 1018\ cm–3). The paramagnetic state is susceptible to illumination both at 10–20 K and 290 K, providing evidence that holes (minority carriers) play an important role in determining the dynamical properties of muonium centers, where change may occur via a process MuBC 0+ h+\to MuBC + followed by charge exchange reaction (or transition Mu+ BC+ e→ Mu0 T). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Neutron polarisation analysis measurements reveal antiferromagnetic spin correlations persisting to temperatures of 120 K in Pauli paramagnetic Y(Mn1−x Fe x )2, 0.03≤x≤0.05. The mean moment at the Mn(Fe) site is found to be 0.2μ B. Transverse field μSR is characterised by weak exponential damping with a rate of 0.02 μs−1 at 300 K increasing according to the power lawT −0.75 to only 0.16μ S −1 at 12 K. It is suggested that these results are consistent with a slowing down of longitudinal spin fluctuations at the Mn site as temperature decreases.  相似文献   

8.
Li3InBr6 undergoes phase transition to a lithium superionic conductor at T tr = 314 K (σ = 5.0 × 10−4 S cm−1 at 330 K). The Rietveld analysis and the DSC measurement suggested that the positional disorder is introduced at the cationic sites above T tr. The X-ray powder diffraction pattern at the superionic phase changes gradually with temperature and finally shows a simple powder pattern at 420 K which is quite similar to that of LiBr. This rock salt structure contains intrinsic vacancies because one In3+ and two vacancies substitute for three Li+. 7Li and 115In NMR support the rapid diffusion of the Li+ and the introduction of the In3+ into the rock salt structure. On the other hand, the ionic conductivity for Na3InCl6 was 10−5 S cm−1 even at 500 K. Conduction path for the sodium ions could be proposed by means of the Rietveld analysis and the NMR experiment using a single crystal.  相似文献   

9.
The addition reaction Mu+NO+M→MuNO+M and the spin exchange reaction Mu(↑) +MO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λc) demostrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined ask 0,Mu =(1.10±0.25)×10−32 cm6 molecules−2 s−1, almost 4 times smaller than the corresponding H atom reactionk 0,H=3.90×10−32 cm6 molecules−2 s−1 [I.M. Campbell et al., J. Chem. Soc. Faraday Trans. 1.71 (1975) 2097]. The average value of the spin exchange rate constants in the 2.5–58 atm pressure range,k SE=(3.16±0.06)×10−10 cm3 molecule−1 s−1, is in good agreement with previous values obtained by transverse field μSR [D.G. Fleming et al., J. Chem. Phys. 73 (1980) 2751].  相似文献   

10.
Spin precession of positive muons in chromium in zero applied magnetic field is reported for the first time. The observations cover the temperature range from about 2.5 K to 10 K and thus pertain to the so-called longitudinal spin-density wave (LSDW) state of antiferromagnetic Cr. The conclusions that may be drawn from the existence of one rather sharp spin precession line are discussed, among them the estimateD μ=2.4·10−14 m2 s−1 for the muon diffusivity at 4 K. Considerable evidence exists for a strong interactions of μ+ with the charge-density waves that are likely to accompany the LSDWs in Cr.  相似文献   

11.
The g-factor of the first excited state of 93Sr (E = 213 keV, T 1/2 = 4.6 ns) was measured by an on-line TDPAC technique with use of the strong hyperfine field in Fe metal. The Larmor frequency ω L = (2.60 ± 0.15) × 108 rad/s was obtained. The g-factor is derived as g = −0.227 ± 0.013 from g = −ℏω L/B hf μ N. If the spin of the first excited state of 93Sr is assumed to be 3/2, the g-factor is predicted by a simple core-excitation model as g = −0.22, which is in good agreement with the present experimental result.  相似文献   

12.
The galvanomagnetic properties of single-crystal samples with various isotopic boron compositions have been investigated for the first time for the normal state of superconductor LuB12 (T c ≈ 0.44 K). Precision measurements of the resistivity, Hall coefficient, and magnetic susceptibility have been performed over a wide temperature range of 2–300 K in magnetic fields up to 80 kOe. A change of the charge transport regime in this nonmagnetic compound with metallic conduction is shown to occur near T* ≈ 50−70 K. As a result, a sharp peak with significantly different amplitudes for Lu10B12 and Lu11B12 is recorded in the temperature dependences of the Hall coefficient R H(T) near T*. A significant (about 10%) difference (in absolute value) of the Hall coefficients R H for the Lu10B12 and Lu11B12 compounds at helium and intermediate temperatures has been found and the patterns of behavior of the dependence R H(H) for T < T* in an external magnetic field H ≤ 80 kOe for Lu10B12 and Lu11B12 are shown to differ significantly. Analysis of the Curie-Weiss contribution to the magnetic susceptibility χ(T) leads to the conclusion about the formation of magnetic moments μeff ≈ (0.13−0.19)μB in each unit cell of the fcc structure of LuB12 compounds with various isotopic compositions. The possibility of the realization of an electronic topological 2.5-order transition near T* and the influence of correlation effects in the 5d-band on the formation of a spin polarization near the rare-earth ions in LuB12 is discussed.  相似文献   

13.
Transverse and zero-field μSR measurements were made on YBa2(Cu1−xNix)3O7−y withx=0.1 and 0.2, and YBa2(Cu1−x Zn x )3O7−y withx=0.03, 0.06, 0.1, and 0.16, wherey≈0.1. Since doping may lead to magnetic ordering this was searched for with both zero and transverse field μSR, but no evidence was found over the temperature range studied: 10–100 K. However, depolarization rates as functions of temperature were obtained, and the low temperature values of these are σ=3.2 μs−1.1.6μs−1, and 1 μs−1 forx=0.01, and 0.2 Ni, respectively, and σ=0.8 μs−1, 0.75 μs−1, 0.65 μs−1, and 0.4 μs−1 forx=0.03, 0.06, 0.1, and 0.16 Zn, respectively. Estimates for the effect of decreasing electron concentration for Zn are made, but these alone do not account for the drop in σ. Estimates for the effect of scattering on λ and hence σ are made. The reduction in σ for Ni dopant is in surprisingly good agreement with these estimates. For Zn the order of magnitude is correct, but the relative lack of further change in σ after the effect of the first 0.03 addition seems to imply a saturation of the effect of scattering.  相似文献   

14.
Poynor  A. N.  Cumblidge  S. E.  Rasera  R. L.  Catchen  G. L.  Motta  A. T. 《Hyperfine Interactions》2001,136(3-8):549-553
We have measured nuclear electric–quadrupole interactions (EQI) at 181Ta impurities substituted as Hf atoms into the Zr site in Zr2Ni. Using perturbed-angular-correlation (PAC) spectroscopy, we measured the EQI over temperatures ranging from 10 to 1200 K. Over the entire range of temperature, the Zr2Ni crystal has a bct Al2Cu structure that includes a single Zr site. The crystal field symmetry surrounding this site is rather low, giving rise to a highly asymmetric electric-field gradient tensor. At 10 K, the EQI is characterized by an angular frequency ω0=601(3) Mrad s−1, and an asymmetry parameter η=0.835(2). At 1200 K, ω0 decreases to 516(3) Mrad s−1, and η also decreases to 0.790(4). Although weak, the temperature dependence of ω0 is consistent with a (1−BT 3/2) power law, in which B=6×10−6 K−3/2. The EQI also manifests a very narrow linewidth. We observed no evidence either for magnetic ordering or for structural phase transitions in the temperature range covered by this experiment. Moreover, the sharpness of the EQI indicates that the samples as prepared are remarkably free of strain and defects. These results indicate that the Zr2Ni structure does not promote the formation of defects and that the power-law dependence of ω0 on T is insensitive to the asymmetric nature of the crystal. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
During 25 years pioneering μCF experiments were performed at PSI. After initial study of the Wolfenstein–Gershtein effect in H/D, an intense research program on dμd fusion led to the early discovery of resonant dμd formation at low temperature and to the first direct observation of μd spin flip. With the Gatchina ionisation chamber absolute precisions of ∼1% on the determination of dμd formation and spin flip rates were recently obtained in good agreement with the theory. In a very large effort the highly resonant dμt fusion cycle was investigated. Record cycle rates up to 2×108 s−1 and yields up to 124 fusions per muon were measured. By slope analysis and by direct observation, effective sticking ω s = (0.505 ± 0.029)% is the final PSI result. Clear experimental evidence of large epithermal resonances in D/T and H/D/T mixtures was found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Machi  I.Z.  Connell  S.H.  Major  J.  Smallman  C.G.  Sellschop  J.P.F.  Bharuth-Ram  K.  Maclear  R.D.  Doyle  B.P.  Butler  J.E.  Scheuermann  R.  Seeger  A. 《Hyperfine Interactions》1999,120(1-8):585-589
This work reports on the promptly forming fraction and the spin relaxation rate of the isotropic muonium (MuT) component in p-type semi-conducting diamond, measured under the condition of illumination. The data are the first such investigations for diamond. A broad band illumination with wavelengths ranging from 0.5 μm to 3 μm was obtained from a Xenon lamp. The energy of the photons was sufficient to excite electrons from the valence band to the 0.28 ppm boron impurity band (0.37 eV). The Transverse Field Muon Spin Rotation (TF-μSR) measurements were conducted as a function of temperature, ranging from 5 K to 300 K. An illumination effect at temperatures below 100 K is observed. It is not yet clear from these data whether the effect is due to Mut scattering off delocalized holes, which are removed by illumination or whether there is prompt trapping of Mut at boron impurities (passivation) which is affected by illumination. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The negative muon spin rotation method (μ SR) has been applied to studies of electronic states at oxygen sites of oxide superconductors YBa2Cu3O7, Nd2−x Ce x CuO4−δ (x=0.15, oxygen reduced), LiTi2O4 and related oxide-insulators La2CuO4−δ, CuO, Cu2O. The paramagnetic shifts of μ trapped at oxygen nuclei in these polycrystalline powder samples have been measured at 300 K. All the measured shifts are positive. In copper-oxides the paramagnetic shifts are of the order 10−3, while in LiTi2O4 is very small (8.4±3.34×10−5). In YBa2Cu3O7, a fast μ spin relaxation timeT 2 * (∼ 200 ns) has been observed; the reason for this is unknown and further studies are now in progress.  相似文献   

18.
    
《Il Nuovo Cimento C》1984,7(6):604-610
Summary The temperature of protons, α particles, silicon and iron ions in the solar wind have been determined analysing 140 energy spectra measured aboard the ISEE-2 spacecraft during 1978 and 1979. The data cover the range of proton temperaturesT p from 104 K to 105 K, never explored in detail before. The experimental results show that in this range of temperatures and for solar-wind velocitiesv sw smaller than 370 km s−1, the temperature of the α-particlesT α is smaller thanT p.T α actually increases faster thanT p withv sw; however, forv sw≤420 km s−1 the ratioT α/T p is always less than 4, while previous observations at higher temperatures (105 K to 106 K) are consistent with a constant ratioT α/T p=4. The temperature of the silicon ions, moreover, tends to become independent ofT p for proton temperatures greater than 3·104 K. Paper presented at the 2o Convegno Nazionale di Fisica Cosmica, held at L'Aquila, 29 May–2 June 1984.  相似文献   

19.
Results of the first μSR studies using Merck FO Optipur silica powder, which contains paramagnetic impurities at the ppb level and has a surface area of 610±20 m2/g. are reported. Above 20 K, the transverse field muonium relaxation rate is roughly constant at 0.5 μs−1. Upon the addition of oxygen at ppm levels, the relaxation rate increases linearly with O2 concentration in the temperature range from 40–100 K yielding two-dimensional depolarization rate constants on the order of 10−4 cm2 molecule−1 s−1. As the temperature is increased further, both oxygen and muonium desorb from the surface yielding a three-dimensional rate constants at 300 K of 3.1(3)×10–10−10 cm3 molecule−1 s−1, in agreement with the gas phase value. Longitudinal field measurements suggest that MuO2 is formed and is able to spin exchange with other oxygen molecules.  相似文献   

20.
A slow conversion to a diamagnetic state has been observed for muonium centers at the tetrahedral interstitial site (Mu0 T) in dark Ge at low temperatures. While the conversion process is affected by illumination, no effect of illumination upon the initial (Mu0 T) centers themselves was observed at 10 K. This is in marked contrast with the case of (Mu0 T) centers in Si where strong interaction with photo‐induced carriers is observed, suggesting that the electronic level associated with (Mu0 T) state in Ge is not located in the energy gap. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号