首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
报道了骨髓间充质干细胞(MSCs)的蛋白质组表达研究。从体外培养的MSCs提取细胞蛋白,经二维电泳分离后用银染方法可检出蛋白点约1600个,选取48个蛋白点进行胶内酶解及质谱分析,经数据库检索成功鉴定了37个蛋白,并对蛋白功能进行初步分析。本实验数据为进一步分析MSCs增殖、分化或凋亡的分子机理提供相关信息。  相似文献   

2.
合成的聚己内酯(PCL)经天然的卵磷脂(Phosphatidylcholine,PC)填充改性后,通过电纺丝技术加工得到三维多孔的纤维支架。卵磷脂含有的两性离子基团,可以显著改善PCL支架材料的亲水性,进而提高支架材料的细胞相容性。体外细胞增殖实验表明,骨髓间充质干细胞(MSCs)在含有5wt%卵磷脂的改性支架表面生长得最好。作为种子细胞的MSCs在流动培养下,通过力学刺激在管状支架内壁形成了多层细胞。通过对样品染色切片和荧光照片的观察,种子细胞MSCs与对照组的血管平滑肌细胞(SMCs)一样,有向改性支架内部生长的趋势。本文以这种PC填充改性PCL材料的纤维支架作为组织工程血管,对其进行了初步的探索。  相似文献   

3.
从蛋白质组学角度分析大鼠骨髓间充质干细胞(MSCs)体外定向分化为心肌细胞过程中蛋白表达情况, 采用二维电泳分离蛋白, 用PDQuest软件分析蛋白表达差异, 并采用质谱(MALDI-TOF-MS)进行鉴定, 得到了54个蛋白点, 对蛋白的生物功能分析表明, 部分蛋白通过不同的信号途径参与了MSCs的分化过程.  相似文献   

4.
利用复乳-溶剂挥发法合成适合细胞三维培养的聚乳酸-羟基乙酸共聚物(PLGA)多孔微球, 并对其表面进行丝素改性, 利用扫描电子显微镜、 能谱、 红外光谱和X射线衍射等对改性前后PLGA多孔微球的理化特性进行表征. 原代培养人牙龈间充质干细胞并进行成骨(茜素红染色)成脂(油红O染色)分化鉴定. 通过负压混悬法将牙龈干细胞负载于丝素改性的PLGA多孔微球上进行5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)细胞增殖及成骨分化研究. 结果表明, 原代培养的牙龈干细胞具有多向分化潜能, 负载在丝素改性的PLGA多孔微球上的细胞有利于细胞增殖. 丝素改性的PLGA多孔微球是良好的细胞递送载体, 为进一步修复牙槽骨缺损提供了科学依据.  相似文献   

5.
5-氮胞苷诱导骨髓间充质干细胞向心肌细胞分化的研究   总被引:1,自引:0,他引:1  
分离大鼠骨髓间充质干细胞,体外培养呈现成纤维细胞表型,用12μmol//L 5-氮胞苷(5-aza)诱导培养,一周后细胞变为细长形成杆状.两周后培养细胞与临近的细胞融合,三周后形成类肌管状结构.通过RT-PCR检测,5-氮胞苷诱导前,间充质干细胞表达α-actin,desmin和MEF-2D,5-aza诱导后表达β-MHC和GATA4.westem Blot分析结果表明α-actin在诱导前后都表达,而myosin则在诱导后才表达.免疫荧光标记α-actin和β-MHC,证实了上述结果,即在5-氮胞苷诱导前后细胞表达α-actin,诱导后myosin才在细胞质中表达,Myosin和β-MHC是心肌细胞特异表达的蛋白.上述结果表明骨髓间充质干细胞具有向新生心室肌分化的潜能,这些诱导分化的细胞为心肌梗塞移植治疗提供一种潜在的供体细胞.  相似文献   

6.
干细胞迁移机理的近场扫描光学显微术研究   总被引:1,自引:0,他引:1  
将内皮细胞生长因子(VEGF)置于甲基纤维素碟中形成VEGF的浓度梯度分布,并将人脐带间充质干细胞(Mesenchymal stem cells,MSCs)于此浓度梯度中培养,观察VEGF能否诱导MSCs定向迁移。应用近场扫描光学显微术(Near-field scanning optical microscopy,NSOM)同时获取了VEGF诱导前后的MSCs的形貌和光学信息。结果表明,近场光学图观测到形貌图上所没有的黑色斑点,分析认为这些黑斑为细胞的黏着斑。近场光学图显示经过VEGF诱导后细胞的黏着斑数量明显增加。同时,对诱导前后干细胞的骨架蛋白进行免疫荧光标记并用共聚焦显微镜进行观察,结果表明细胞骨架由诱导前的无序状态转变为诱导后的有序状态,说明诱导后的干细胞处于迁移状态。光学超微结构图则显示了诱导后干细胞表面的光学细节比诱导前细胞大量增加,出现了大量直径约200 nm的光斑,这是由于细胞表面大量分泌黏附分子等蛋白分子引起的,这些结果为VEGF能够诱导MSCs进行定向迁移提供了实验依据和可视化证明。也表明NSOM不但能提供高分辨的光学分辨率,还可提供生物细胞精细结构的更深层次的光学信息。  相似文献   

7.
皮下荷瘤模型是常用的体内肿瘤模型,其构建需要高浓度的肿瘤细胞。使用了微载体的三维培养技术因能够提供更大的表面积,比传统的二维培养更容易富集大量细胞。本研究用多种方法制备了玉米蛋白多孔微载体,并选择孔结构符合要求的一种微载体用于肿瘤细胞的扩增富集,以提高皮下荷瘤模型的成瘤率。实验结果表明,细胞在微载体上有良好的贴壁能力,与用相同材料制备的无孔微载体相比,具有更高的细胞密度。该微载体有望应用于3D肿瘤模型的构建。  相似文献   

8.
采用紫外固化法制备了基于丙烯酸酯类水凝胶的聚合物涂层(PC),并用X射线光电子能谱(XPS)、水接触角(WCA)和原子力显微镜(AFM)分别对PC进行了化学组成和表面性能的表征.在PC表面进行了人类脂肪干细胞(h ASC)的体外长期培养扩增,得到的第3代细胞的生物学表征结果表明,干细胞在PC表面能正常黏附生长,流式细胞仪检测发现干细胞对特征标记物CD49d,CD73,CD105的阳性显性比例较高,对HLA-DR和CD31几乎不显性,说明扩增的干细胞具有h ASC特征.对PC上扩增的干细胞进行诱导分化,并用油红O、茜素红和阿利新蓝分别进行染色分析,结果表明,该干细胞保留了h ASC的多能特性:能分化为成脂、成骨和成软骨细胞.含有单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)、甲基丙烯酸环己酯(CHMA)和甲基丙烯酸-2-(二乙氨基)乙酯(DEAEMA)的PC2(质量比为3∶1∶2)在用于h ASC体外长期培养时,比其它PC和TCP更有利于细胞的黏附和增殖,纯化细胞,保持其多能性.实时荧光定量PCR(RT-q PCR)的分析表明PC2上得到的细胞更容易向成骨和成软骨细胞分化.  相似文献   

9.
通过脱细胞技术制备了猪骨脱细胞基质(DBM), 用胃蛋白酶消化DBM使其变为可溶形式, 采用静电纺丝技术制备了含有DBM的左旋聚乳酸(PLLA)电纺纤维(PLLA/DBM), 并对PLLA/DBM的形貌、 亲水性、 细胞相容性、 成骨性能和体外矿化能力进行评价. 研究结果表明, 脱细胞处理能够有效去除骨组织中的细胞成分, 使DNA含量显著下降. DBM经胃蛋白酶处理后溶于六氟异丙醇(HFIP), 可进行静电纺丝, 制备的PLLA/DBM[m(PLLA)∶m(DBM)=10∶0, 9∶1, 7∶3, 5∶5]电纺纤维具有良好的亲水性, 且无细胞毒性, 对骨髓间充质干细胞的黏附及成骨分化有明显的诱导促进作用, 体外生物矿化效果优良.  相似文献   

10.
陈薇  曾和平  王婷婷 《分析化学》2008,36(4):459-466
用石油醚、乙酸乙酯、氯仿和二次蒸馏水分别提取四物汤药剂,得到不同极性部位的溶剂提取物。促进骨髓间充质干细胞(rMSCs)增殖活性用四甲基偶氮唑盐(MTT)法,结果表明,四物汤乙酸乙酯提取部位(A-2)具有促进MSCs增殖的活性。用硅胶柱层析的方式对A-2作梯度洗脱得到20个组分,记为F-1~F-20。经MTT法和流式细胞技术评价,选择具有促进MSCs增殖的活性的F-4、F-7、F-10和F-11组分。采用HPLC、红外光谱和质谱检测发现,组分F-4为藁本内酯;用HPLC-MSn发现,F-11中含量达84.47%的成分为6,7-二羟基-烯丙基苯酞。HPLC结果显示,F-7和F-10有较大含量的脂肪酸酯类化合物。选用4个酯类标准品,先用MTT法和流式细胞技术对其评价;结果显示浓度为90mg/L时,十六酸甲酯(S-1)和十八酸乙酯(S-4)的增殖指数(PI)均高于对照组,具有促进MSCs体外增殖作用;而十六酸乙酯(S-2)和十八酸甲酯(S-3)增殖指数(PI)均低于对照组,具有抑制MSCs体外增殖作用。对F-7鉴定中检出含有S-1(3.04%),S-2(3.92%),S-4(9.61%),在F-10中检出S-1(14.46%),S-2(17.47%),S-3(3.19%),S-4(1.03%)。生物活性显示F-7活性强于F-10。初步推测在酯类混合物中,对MSCs起促进作用主要为S-1和S-4。结果表明,四物汤乙酸乙酯提取部位具有促进MSCs增殖作用的成分是藁本内酯、十六酸甲酯和十八酸乙酯。  相似文献   

11.
Microcarrier‐based stem cell expansion cultures can increase the dimensions of in vitro stem cell cultures from 2D to 3D. The culture handling process then becomes more efficient compared with conventional 2D cultures. However, the use of spherical plastic microcarriers complicates the monitoring of cell culture. To facilitate monitoring, transparent disc‐shaped microcarriers are manufactured using a light‐initiated microfluidic printing system and the obtained microcarriers are named as 2.5D microcarrier. The 2.5D microcarriers (diameter/height ≈ 5) enable us to use conventional monitoring tools in 2D‐based platform during the in vitro expansion on a 3D culture platform. Surface modification via a 1 h‐long poly‐dopamine (PDA) reaction can maintain the transparent nature of the microcarriers while optimizing the cell attachment. The surface marker expression and differentiation potential of the 2.5D microcarrier‐expanded stem cells reveal that the characteristics and functionalities preserved during expansion. The 2.5D microcarrier is readily integrated into an on‐bead assay to conserve reagents and permit a high number (n = 9) of repeated measurements with reliable results. These results demonstrate that the 2.5D microcarrier‐based scale‐up culture provides a valuable tool for the in vitro expansion of adherent stem cells, especially if repetitive monitoring is required.  相似文献   

12.
Biodegradable poly(lactic-co-glycolic acid) (PLGA)/carboxyl-functionalized multi-walled carbon nanotube (c-MWCNT) nanocomposites were successfully prepared via solvent casting technique. Rat bone marrow-derived mesenchymal stem cells (MSCs) were employed to assess the biocompatibility of the nanocomposites in vitro. Scanning electron microscopy (SEM) observations revealed that c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLGA matrix. Surface properties were determined by means of static contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis. The presence of c-MWCNTs increased the mechanical properties of the nanocomposites. Seven-week period in vitro degradation test showed the addition of c-MWCNTs accelerated the hydrolytic degradation of PLGA. In addition, SEM proved that the cells could adhere to and spread on films via cytoplasmic processes. Compared with control groups, MSCs cultured onto PLGA/c-MWCNT nanocomposites exhibited better adhesion and viability and also displayed significantly higher production levels of alkaline phosphatase (ALP) over 21 days culture. These results demonstrated that c-MWCNTs modified PLGA films were beneficial for promoting cell growth and inducing MSCs to differentiate into osteoblasts. This work presented here had potential applications in the development of 3-D scaffolds for bone tissue engineering.  相似文献   

13.
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.  相似文献   

14.
Transplanting fetal kidney cells (FKCs) can regenerate kidney. This requires in vitro expansion in cell number to acquire enough cells for transplantation. However, FKCs may change their cellular characteristics during expansion and, thus, may not regenerate kidney tissue upon transplantation. We investigated how cell culture period affects cellular characteristics and in vivo regenerative potential of FKCs. As the passage number increased, cell growth rate and colony forming ability decreased while senescence and apoptosis increased. To examine in vivo regenerative potential, FKCs cultured through different numbers of passages were implanted into the parenchyma of kidneys of immunodeficient mice using fibrin gel for 4 wk. Histological analyses showed passage-dependent kidney tissue regeneration, and the regeneration was better when cells from lower number of passages were implanted. This result shows that in vitro culture of FKCs significantly affects the cell characteristics and in vivo tissue regenerative potential.  相似文献   

15.
Mesenchymal stem cells (MSCs) secrete bioactive factors that exert diverse responses in vivo. In the present study, we explored mechanism how MSCs may lead to higher functional recovery in the animal stroke model. Bone marrow-derived MSCs were transplanted into the brain parenchyma 3 days after induction of stroke by occluding middle cerebral artery for 2 h. Stoke induced proliferation of resident neural stem cells in subventricular zone. However, most of new born cells underwent cell death and had a limited impact on functional recovery after stroke. Transplantation of MSCs enhanced proliferation of endogenous neural stem cells while suppressing the cell death of newly generated cells. Thereby, newborn cells migrated toward ischemic territory and differentiated in ischemic boundaries into doublecortin+ neuroblasts at higher rates in animals with MSCs compared to control group. The present study indicates that therapeutic effects of MSCs are at least partly ascribed to dual functions of MSCs by enhancing endogenous neurogenesis and protecting newborn cells from deleterious environment. The results reinforce the prospects of clinical application using MSCs in the treatment of neurological disorders.  相似文献   

16.
Physical cues from the extracellular microenvironment play an important role in regulating cell behavior, such as adhesion, migration, and differentiation. Many studies have shown that different physical parameters (eg, stiffness and topography) could modulate the in vitro differentiation of mesenchymal stem cells (MSCs), which had multilineage differentiation potential and could be easily isolated from various tissues such as bone marrow, adipose tissue, and the umbilical cord. However, the underlying mechanism of the topographical influence on MSCs and the detailed cell‐substrate interaction remain unclear. Here, we present oriented elliptical inverse opal structures for regulating the morphology and alignment of bone marrow‐derived MSCs. The inverse opal structures were made through a convenient bottom‐up approach of self‐assembly, which is facile and cost effective. MSCs cultured on the oriented structures were highly aligned and extended highly oriented thick lamellipodia. Moreover, the oriented substrates cracked along the lateral boundary of the cells, suggesting that a strong cell‐substrate interaction was induced by the response of MSCs to the oriented topography. These features of the oriented elliptical topography indicated their promising value in stem cell research and tissue engineering.  相似文献   

17.
Abundant and less passaged cells are highly expected in clinical application since repeated subculture reduces stem cell characteristics. Long time culture of stem cells without passage is therefore needed. The growth and cell viability of human adipose-derived stem cells (hADSCs) were investigated by live/dead staining, cck-8 kits, and hemocytometer every day in 30?days of culture. The stem cell characteristics of hADSCs at the beginning and the end of culture were detected by flow cytometry and histochemical staining. hADSCs can be cultured up to the 30th day in one passage while maintaining high level cell viability and their stem cell characteristics. In addition, the cells displayed two plateau phases and three logarithmic phases during 1?month of culture. Increasing expression of cyclin A at protein level resulted in an increase in the percentage of hADSCs in the S and G2/M phases, while decreasing protein level of cyclin D1 induced a decline in the proportion of hADSCs in the G0/G1 phase, regulating cells to move into rapid proliferation. This study demonstrates that a great quantity of hADSCs can be obtained in vitro by prolonging the culture time of each passage. And cyclin A and cyclin D1 affect the distribution of cell cycle and regulate the growth of hADSCs.  相似文献   

18.
Mesenchymal stem cells (MSCs) exhibit the feature of homing to tumor site and being immunosuppressive, which have broad prospects in tumor therapy. However, MSCs are commonly cultured in a two-dimensional (2D) condition, which would gradually loss some in vivo important properties. In this study, we built a three-dimensional (3D) system with collagen/Matrigel scaffolds to culture MSCs. The results indicated that MSCs in 3D scaffolds showed higher proliferation ability than that of in 2D cells. In vitro, 3D-cultured MSC-conditioned media (CM) significantly inhibited the proliferation of hepatoma cells HepG2 than that of in 2D-cultured MSC-CM and control groups. In vivo, animal transplantation experiment showed that the treatment of 3D-cultured MSC-CM could further significantly delay the tumor initiation and decrease the tumor volume. The microarray, quantitative PCR, and ELISA assay found that MSCs cultured in the 3D system expressed and secreted more amounts of IL-24. RT-PCR and western blot results showed that IL-24 can activate JAK1-STAT3 pathway via IL22R1 and IL20R2, and further inhibit the proliferation of HepG2 cells. Taken together, these results demonstrated that MSCs cultured in the 3D system had an inhibitory effect on the proliferation of HepG2 cells, probably through secreting more IL-24, which activated JAK1-STAT3 signaling and finally inhibited the cell proliferation to delay tumor initiation. This study also provided a simpler and more reliable approach for MSCs to suppress tumor cells, and provided effective experimental data for clinical treatment of tumor and experimental basis.  相似文献   

19.
Mesenchymal stem cells (MSC), also called marrow stromal cells, are adult cells that have attracted interest for their potential uses in therapeutic applications. There is a pressing need for scalable culture systems due to the large number of cells needed for clinical treatments. Here, a tailorable thin polymer coating—poly(poly(ethylene glycol) methyl ether methacrylate‐ran‐vinyl dimethyl azlactone‐ran‐glycidyl methacrylate) [P(PEGMEMA‐r‐VDM‐r‐GMA); PVG]—to the surface of commercially available polystyrene and glass microcarriers to create chemically defined surfaces for large‐scale cell expansion is applied. These chemically defined microcarriers create a reproducible surface that does not rely on the adsorption of xenogenic serum proteins to mediate cell adhesion. Specifically, this coating method anchors PVG copolymer through ring opening nucleophilic attack by amine residues on poly‐l ‐lysine that is pre‐adsorbed to the surface of microcarriers. Importantly, this anchoring reaction preserves the monomer VDM reactivity for subsequent functionalization with an integrin‐specific Arg‐Gly‐Asp peptide to enable cell adhesion and expansion via a one‐step reaction in aqueous media. MSCs cultured on PVG‐coated microcarriers achieve sixfold expansion—similar to the expansion achieved on PS microcarriers—and retain their ability to differentiate after harvesting.  相似文献   

20.
The traditional concept of stem cell therapy envisions the isolation of stem cells from patients, propagation and differentiation in vitro, and subsequent re-injection of autologous cells into the patient. There are many problems associated with this paradigm, particularly during the in vitro manipulation process and the delivery and local retention of re-injected cells. An alternative paradigm that could be easier, safer, and more efficient, would involve attracting endogenous stem cells and precursor cells to the defect site for new tissue regeneration. Hepatocyte growth factor (HGF), a pleiotropic cytokine of mesenchymal origin, exerts a strong chemoattractive effect on mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and induces migration of MSCs in vitro. However, HGF undergoes rapid proteolysis in vivo, which results in a very short lifetime of the bioactive cytokine. To maintain the therapeutic level of HGF at the defect site necessary for endogenous stem cell recruitment, sustained, long-term, and localized delivery of HGF is required. Thiol-modified glycosaminoglycans hyaluronan (HA) and heparin (HP), combined with modified gelatin (Gtn), have been crosslinked with poly(ethylene glycol) diacrylate (PEGDA) to afford semisynthetic ECM-like (sECM) hydrogels that can both provide controlled growth factor release and permit cell infiltration and proliferation. Herein we compare the use of different sECM compositions for controlled release of HGF and concomitant recruitment of human bone marrow MSCs into the scaffold in vitro. [Figure: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号