首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a colloidal assembly of apparently randomly adhering Ag spheres with diameters of approximately 20 – 25 nm. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces were analyzed in this study. Briefly, it was shown that Pip, in generally in vertical orientation, and Thi, in the edge‐on position, relative to the colloidal Ag surface interacted with this surface through their lone electron pairs on the nitrogen and sulfur atoms, respectively. The imide bond of the X‐Pro peptide linkage and the guanidine group of Arg were involved in the adsorption process. In addition, it was demonstrated that the specific differences in the amino acid sequences slightly influenced the mode of adsorption. For example, Aaa in Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK and D‐Phe (vertical with respect to the colloidal Ag surface) in [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK assisted in the adsorption of these peptides onto the colloidal Ag particles. To discuss these spectral alterations due to the different surface adsorption mechanisms of these peptides, the spectral changes were analyzed according to the adsorption process and Fourier‐transform‐Raman spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This study reports the Raman (FT‐RS) and absorption infrared (FT‐IR) spectra, based on calculated wavenumbers and normal modes of vibrations, of the following compounds: L ‐Ala‐L ‐NH‐CH(Me)‐PO3H2 (alafosfalin, A1), L ‐Ala‐D ‐NH‐CH(Me)‐PO3H2 (A2), L ‐Ala‐L ‐NH‐CH(Et)‐PO3H2 (A3), D ,L ‐Ala‐D,L ‐NH‐CH(Et)‐PO3H2 (A4), L ‐Ala‐D ‐NH‐CH(iPr)‐PO3H2 (A5), L ‐Ala‐D,L ‐NH‐CH(iPr)‐PO3H2 (A6), L ‐Ala‐D,L ‐NH‐CH(tBu)‐PO3H2 (A7), L ‐Ala‐D,L ‐NH‐CH(iBu)‐PO3H2 (A8), L ‐Ala‐D,L ‐NH‐CH(cBu)‐PO3H2 (A9), L ‐Ala‐D,L ‐NH‐CH(nPA)‐PO3H2 (A10), β‐Ala‐D ‐NH‐CH(Me)‐PO3H2 (A11), and D,L ‐Ala‐NH‐C(Me,Me)‐PO3H2 (A12). The equilibrium geometries and vibrational wavenumbers are calculated using density functional theory (DFT) at the B3LYP; 6–31 + + G** level of theory using Gaussian'03, GaussSum 0.8, and GAR2PED software. We briefly compare and analyze the experimental and calculated vibrational wavenumbers in the range of 3600–400 cm−1. In addition, Raman wavenumbers are compared to those from surface‐enhanced Raman scattering (SERS) for the phosphonodipeptides of alanine (Ala) adsorbed on a colloidal silver surface. The geometry of these molecules etched on the silver surface is deduce from the observed changes in both the intensity and breadth of Raman bands in the spectra of the bound vs free species. For example, A7, A8, A1, A3, and A4 appear to adsorb onto the colloidal silver particles mainly through the phosphonate terminus, and for A3 and A4, through the  C‐NH2 and  CONH fragments. The most dominant SERS bands of A5, A6, A9, A10, and A11 are due to the amide bond vibrations, as well as to the vibrations of the  C‐NH2 group (A9 and A10) and the C C group (A6 and A11). The differences recorded for the A5, A6, A9, A10, and A11 and those of A2 and A12 are due to interactions between the amine and methyl groups with the silver surface, and they reflect vibrational characteristic of these groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
SERS studies presented in this work on BN8-14, [d-Phe6,β-Ala11,Phe13,Nle14]BN6-14, [d-Tyr6,β-Ala11,Phe13,Nle14]BN6-14, BN and its modified analogues, as well as NMB, NMC, and PG-L show that these molecules at pH 8.3 bind to a colloidal silver surface mainly through Trp8 and Met14 residues. Trp8 adsorbs at the surface almost perpendicularly. Met14 appears on the surface mainly as a PC-G conformer. His12, as is evident from the spectra, practically does not take part in the adsorption process. Substitution of l-leucine at the 13 position of amino acid sequence with l-phenylalanine does not change substantially the pattern of the adsorption mechanism; however, substitution of phenylalanine at the 12 position (instead of l-histidine) causes changes in the SERS spectra that show that Phe12 takes parallel orientation to the surface upon adsorption of [d-Phe12]BN, while in the case of [Tyr4,d-Phe12]BN this residue is perpendicular to the surface and influences the orientation of the bound Trp8. On the other hand, substitution of Asn with Tyr in the 6 position in nonapeptide fragment causes changes in the adsorption mechanism. In this case, the discussed fragment binds to the silver colloidal surface by Tyr6, Trp8, and Met14. The SERS spectrum of NMC is very similar to that of BN; although it differs by the binding orientation of the amide bond towards the surface. Appearance of Phe13 in NMB and PG-L causes that this residue competes successfully with Trp8 forcing it to take tilted orientation. As seen from the enhancement of the characteristic Phe vibrations this moiety in NMB and PG-L adsorbs on the silver surface in a tilted fashion. This arrangements cause that the 8-14 peptide chain in all these studied compounds takes almost a parallel orientation to the surface while the 1-5 fragment of the peptide chain is removed from the silver surface vicinity.  相似文献   

4.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a highly specific electrochemically roughened SERS‐active Ag substrate characterized by the formation of a 50 – 150 nm Ag islands on its surface. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces and reorientation occurring over time of adsorption were analyzed in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Fourier‐transform Raman and infrared spectra were acquired for four arginine vasopressin (AVP) analogs containing L ‐diphenylalanine (Dpa): [Dpa2]AVP, [Cpa1,Dpa2]AVP, [Dpa3]AVP, and [Cpa1,Dpa3]AVP (where Cpa denotes 1‐mercaptocyclohexaneacetic acid). We compared and analyzed these spectra. In addition, the Raman spectra were compared to the corresponding surface‐enhanced Raman scattering spectra recorded in an aqueous silver colloidal dispersion. Silver colloidal dispersions prepared by the simple borohydride reduction of silver nitrate were used as substrates. The geometry of these molecules etched on the silver surface was deduced from the observed changes in the intensity enhancement, breadth, and shift in wavenumber of the Raman bands in the spectra of the bound versus free species. Based on the obtained data, adsorption mechanisms were proposed for each case, and the suggested adsorbate structures were compared. All the molecules were thought to adsorb onto a silver surface via a phenyl ring, free electron pairs on the sulfur atom, and CO and  CONH‐bonds. However, the orientation of these fragments on the colloidal silver surface and the strength of the interactions with this surface are different. For [Dpa3]AVP and [Cpa1,Dpa3]AVP, a strong interaction among the—CCN‐peptide fragment and the colloidal silver surface occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Neurotensin (NT) is a naturally occurring neurotransmitter that mediates the metabotropic seven‐transmembrane G protein‐coupled receptors, namely NTR1s, richly expressed on tumor surface. Therefore, mutated active molecular fragments of NT that possess selective antagonist or weak agonist properties and the high affinity to NTR1 have attracted considerable interest for use in thrombus, inflammation, and imaging/treatment of tumors. In this work, SERS spectra of three N‐terminal fragments of human NT (NT1‐6, NT1‐8, and NT1‐11) and six specifically mutated C‐terminal fragments of human NT, including NT8‐13, [Dab9]NT8‐13, [Lys8,Lys9]NT8‐13, [Lys8‐(®)‐Lys9]NT8‐13, [Lys9,Trp11,Glu12]NT8‐13, and NT9‐13, adsorbed onto nanometer‐sized colloidal silver particles in an aqueous solution at pH level of the solution 2 are presented. A comparison was made between the structures of the native and mutated fragments to determine how changes in peptide length and mutations of the structure influenced the NT adsorption properties. Based on the interpretation of the obtained data, we showed that all of the investigated NT fragments, excluding [Lys9,Trp11,Glu12]NT8‐13, tended to adsorb on the silver surface mainly through the L‐tyrosine residue and the carboxylate group. The Tyr ring lied more‐or‐less flat on the silver surface. The hydrogen atom from the phenol group dissociated upon binding. On the other hand, [Lys9,Trp11,Glu12]NT8‐13 bound to this substrate through the close to vertical co‐pyrrole ring of the indole ring (Trp11) and –COO . Comparison of the presented data with those obtained earlier for NT allows to suggest that in the case of naturally occurring neurotensin, both Tyr residues together with the carboxylate group play crucial role in the binding to the nanometer‐sized colloidal silver particles. This geometry of binding forces the NT molecule to lay flat on the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Eritadenine, 2(R),3(R)‐dihydroxy‐4‐(9‐adenyl)‐butyric acid, is a cholesterol‐reducing compound naturally occurring in the shitake mushroom (Lentinus edodes). To identify the unknown Raman spectrum of this compound, pure synthetic eritadenine was examined and the vibrational modes were assigned by following the synthesis pathway. This was accomplished by comparing the known spectra of the starting compounds adenine and D ‐ribose with the spectra of a synthesis intermediate, methyl 5‐(6‐Aminopurin‐9H‐9‐yl)‐2,3‐O‐isopropylidene‐5‐deoxy‐β‐D ‐ribofuranoside (MAIR) and eritadenine. In the Raman spectrum of eritadenine, a distinctive vibrational mode at 773 cm−1 was detected and ascribed to vibrations in the carbon chain, ν(C C). A Raman line that arose at 1212 cm−1, both in the Raman spectrum of MAIR and eritadenine, was also assigned to ν(C C). Additional Raman lines detected at 1526 and at 1583 cm−1 in the Raman spectrum of MAIR and eritadenine were assigned to ν(N C) and a deformation of the purine ring structure. In these cases the vibrational modes are due to the linkage between adenine and the ribofuranoside moiety for MAIR, and between adenine and the carbon chain for eritadenine. This link is also the cause for the disappearance of adenine specific Raman lines in the spectrum of both MAIR and eritadenine. Several vibrations observed in the spectrum of D ‐ribose were not observed in the Raman spectrum of eritadenine due to the absence of the ribose ring structure. In the Raman spectrum of MAIR some of the D ‐ribose specific Raman lines disappeared due to the introduction of methyl and isopropylidene moieties to the ribose unit. With the approach presented in this study the so far unknown Raman spectrum of eritadenine could be successfully identified and is presented here for the first time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A cultural heritage canvas from the early 19th century, painted by the Vaccaro brothers for the church of Niscemi, province of Caltanissetta, Sicily, was analyzed using Fourier transform (FT)‐Raman, attenuated total reflectance‐FT‐infrared and surface enhanced Raman scattering (SERS) spectroscopy. The painting, still used in religious rites related to the Easter mass (‘la calata da tila’), depicts the scene of the Crucifixion and is executed in a scarce palette, with white, green and blue colors. Analysing vibrational data in conjunction with scanning electron microscopy and solid ‐state 13C‐NMR signals of the linen threads, we were able to offer valuable insight into the painting technique, unknown prior to this study. SERS is usually employed in artwork diagnosis for the identification of organic lakes and dyes. Due to its sensitivity, SERS has been successfully applied for the detection of either organic painting materials (indigo) that are usually not resolved by conventional Raman spectroscopy or of inorganic pigments difficult to observe in the presence of highly fluorescent aged organic supports or binders. To the best of our knowledge, this is also the first report on the SERS investigation of flax used in linen from cultural heritage objects using Ag colloidal nanoparticles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Kinetensin (KN) and its amino acids 1–8 fragment ([des‐Leu9]KN), neuromedin N (NMN), and xenopsin (XP) and its two analogs (XP‐1 and XP‐2) belong to the neurotensin family of peptides and are known to stimulate the growth of human tumors. In this work, we report Fourier transform‐Raman and surface‐enhanced Raman scattering (SERS) studies of these peptides and discuss their structures, orientation, and mode of adsorption onto a highly specific, electrochemically roughened SERS‐active Ag electrode that is characterized by the formation of a 50–150 nm Ag island on its surface. We show that the investigated peptides bind preferentially to this surface by substantial electronic overlap between the metal surface and the π‐orbitals of the benzene rings of the Phe, Tyr, and Trp residues, which forces them to take parallel or almost parallel orientations with respect to the surface. In addition, the –CH2–, –CNH2, and –COO molecular fragments are involved in interactions with (binding to or in close proximity with) the Ag surface. The SERS data show that the adsorption modes in each of these cases are very similar. In addition, we show that the specific differences in the amino acid sequences do not significantly affect the orientation of the investigated peptides on the Ag substrate. This result implies that the N‐termini of the neurotensin‐family peptides do not influence the mode for adsorption onto the Ag substrates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Roughened nickel electrode surfaces have been demonstrated to exhibit a moderate enhanced Raman scattering effect with an enhancing factor of about 104, which is not suitable in some cases for further inhibition adsorbates study. We reported here a new modified roughening procedure of nickel electrodes, by which a high S/N ratio surface‐enhanced Raman spectroscopy (SERS) of pyridine was obtained. At least two major advantages were found for the modified roughening methods: (1) enhancing factor was improved by a factor of about 10, (2) SERS‐active sites were distributed uniformly on the Ni surfaces. Potential‐dependent SERS spectra of a candidate inhibitor molecule benzotriazole (BTAH) adsorbed onto nickel electrodes were briefly presented for verifying the feasibility of the modified roughening method in this paper. Results showed that BTAH molecules were adsorbed on the nickel electrodes in neutral molecule form at more negative potentials and a polymer‐like film with the composition of [Nin(BTA)p]m formed on the nickel electrodes with the positive shift of potentials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The oroxylin, 5,7‐dihydroxy 6‐methoxy flavone is a potent natural product extracted from ‘Vitex peduncularis’. Density functional theory (DFT) at B3LYP/6‐311G(d,p) level has been used to compute energies of different conformers of oroxylin to find out their stability, the optimized geometry of the most stable conformer and its vibrational spectrum. The conformer ORLN‐1 with torsion angles 0, 180, 180 and 0 degrees, respectively, for H13 O12 C6 C5, H14 O10 C4 C5, H13 O12 C6 C5 and H14 O10 C4 C5 is found to be most stable. The optimized geometry reveals that the dihedral angle φ between phenyl ring B and the chrome part of the molecule in − 19.21° is due to the repulsive force due to steric interaction between the ortho‐hydrogen atom H29 of the B ring and H18 of the ring C (H29·H18 = 2.198 Å). A vibrational analysis based on the near‐infrared Fourier transform(NIR‐FT) Raman, Fourier transform‐infrared (FT‐IR) and the computed spectrum reveals that the methoxy group is influenced by the oxygen lone pair‐aryl pz orbital by back donation. Hence the stretching and bending vibrational modes of the methoxy group possess the lowest wavenumber from the normal values of methyl group. The carbonyl stretching vibrations have been lowered due to conjugation and hydrogen bonding in the molecules. The intramolecular H‐bonding and nonbonded intramolecular interactions shift the band position of O10 H14 and O12 H13 stretching modes, which is justified by DFT results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号