首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of passive samplers differing in their geometry (OVM 3500 by 3M, ORSA 5 by Dr?ger) were compared with respect to their suitability for typical environmental indoor and outdoor VOC concentrations. Benzene, toluene, o-, m-, p-xylene, ethylbenzene, tetrachloroethene, trichloroethene, nonane and ethyl acetate were representatively analyzed by dual-column capillary gas chromatography with tandem ECD-FID detection. There was a good correlation between the results obtained with OVM 3500 and ORSA 5 monitors indicating that both monitors can be used for this kind of application. The ratio between the results for indoor air sampling with OVM 3500 and ORSA 5 monitors was between 0.89 and 1.14 showing no systematic variation. For outdoor air sampling the ratio was between 1.06 and 1.26 indicating that the results obtained with OVM 3500 monitors were slightly higher. Reproducibility was slightly better when using ORSA 5 monitors. But, due to the higher sampling rates which are a result of the larger cross-sectional area, signal-to-noise ratios obtained with OVM 3500 monitors were between six to nine times higher than those of ORSA 5 samplers. Blank values of the unexposed samplers were comparable for both sampler types. As a consequence, detection limits were by a factor of 1.5 to 4 better for OVM 3500 monitors. Received: 18 August 1998 / Revised: 6 October 1998 / Accepted: 15 October 1998  相似文献   

2.
A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.  相似文献   

3.
Abstract

Carbonyls in air are sampled using small DNPH-coated C18 cartridges and analyzed by liquid chromatography with diode array detection. Carbonyl structure confirmation is obtained by comparing diode array spectral scans of samples to the uv-visible spectra (190–600 nm) of some 20 carbonyl hydrazones recorded in the CH3CN—H2O eluent used for LC analysis. Analytical detection limits are 0.09–3.4 nanograms carbonyl and correspond to 0.14–1.24ppb in 60 L air samples. Accuracy was ±5% as measured for independently prepared hydrazone standards. The precision was 1–5% for multiple injections of hydrazone standards and 2–10% for replicate analysis of indoor and outdoor air samples. Excellent agreement was obtained in an interlaboratory comparison that included hydrazone standards as well as indoor air samples.

Cartridge collection efficiency has been tested over a range of conditions (sampling flow rate, volume of air sampled, presence of co-pollutants including photochemical oxidants) and is >0.95 for monofunctional carbonyls, unsaturated carbonyls, and alpha dicarbonyls. Carbonyl recovery by cartridge elution is >0.99 for all carbonyls tested. Examples of applications are given in the fields of atmospheric chemistry, indoor air pollution in museums, and outdoor air quality.  相似文献   

4.
Passive air sampling was undertaken using polyurethane foam passive air samplers at three types of locations, including indoors (six offices) at buildings in the central business district (CBD) and at a private suburban home (indoor and outdoor) located 9 km from the CBD in Brisbane, Queensland, Australia. Estrogenic (E-SCREEN—MCF7-BOS) and aryl hydrocarbon receptor (AhR) (CAFLUX—H4G1.1c2) activity were assessed for samples collected from each of these locations. The samples were tested either as crude extracts (“untreated”) or were subjected to H2SO4 silica gel (“treated”) for each location in order to determine whether chemicals, which are not resistant to this treatment like polycyclic aromatic hydrocarbons, potentially account for the observed activity. In most cases, H2SO4 treatment resulted in a statistically significant reduction of potency for both endpoints, suggesting that chemicals less resistant to treatment may be responsible for much of the detected biological activity in these locations. Estrogenic potency measurements (<0.22–185 pg m−3) were highest in the indoor offices, followed by the indoor suburban home and finally the outdoor suburban home (which was not estrogenic). Total AhR activity for crude extracts (1.3–10 pg m−3) however was highest for the outdoor suburban home site. Levels of polycyclic aromatic hydrocarbons were monitored indoors and outdoors at the suburban home. At that location, polycyclic aromatic hydrocarbon air concentrations were on average approximately two times higher outdoor than indoor, while AhR potency was five times higher outdoor than indoor. No significant correlation was found between the estrogenic and AhR activity (P = 0.88) for the sites in this study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
An analytical method was established for the simultaneous determination of 39 polycyclic aromatic hydrocarbons (PAHs) in air. The method was applied to a survey of gaseous and particulate PAHs in household indoor air. The survey was performed in 21 houses in the summer of 1999 and in 20 houses in the winter of 1999-2000 in Fuji, Japan. Thirty-eight PAHs were determined in indoor and outdoor air in the summer, and 39 PAHs were determined in indoor and outdoor air in the winter. The concentrations of gaseous PAHs in indoor air tended to be higher than those in outdoor air in the summer and winter. The concentrations of particulate PAHs in indoor air were the same as or lower than those in outdoor air in the summer and winter. PAH profiles, correlations between PAH concentrations, and multiple regression analysis were used to determine the factors affecting the indoor PAH concentrations. These results showed that gaseous PAHs in indoor air were primarily from indoor emission sources, especially during the summer, and that indoor particulate PAH concentrations were significantly influenced by outdoor air pollution.  相似文献   

6.
Correlation between indoor and outdoor levels of BTX (benzene, toluene and the sum of ethyl benzene, o-xylene, m-xylene and p-xylene) has been investigated at thirteen homes, thirteen classrooms and related outdoor atmospheres. Non smoking people and low polluted sites were chosen for this campaign, in order to highlight if commonly used domestic materials could act as internal sources. Data, obtained by employing long-term diffusive samplers over a three-month period, are compared with a parallel experiment showing the day-night indoor/outdoor trend. The obtained results let us conclude that there is evidence of internal sources at homes whilst in the schools depletion phenomena prevail, probably due to the walls adsorption.  相似文献   

7.
The investigation of air pollution is a highly important field of research. Air quality in a vehicle’s interior has attracted growing attention since people spend much of their time in vehicles and those frequently travelling in new cars are exposed to harmful compounds. The main air pollutants inside new vehicles are volatile organic compounds (VOCs), present as a result of interior materials’ de-gassing. Among the sampling methods used in indoor air quality research, active sampling for VOCs collection is one method that has been extensively described and applied. The present study sought to implement passive sampling with Radiello® samplers to collect air samples directly in the car factory. The results from passive sampling were compared with results derived from active sampling using Carbograph 1TD and silicagel coated with 2,4-dinitrophenylhydrazine cartridges, based on previously validated methods. The identification and quantification of organic compounds was performed using gas chromatography with flame ionisation coupled with a mass spectrometer after thermal desorption. Aldehydes were determined by means of high-performance liquid chromatography. In the present study, the results obtained with the use of active and passive methods of air sampling were compared, correlations between the two sampling methods were designated and the repeatability of passive sampling was detailed.  相似文献   

8.
A sensitive and reliable method is described for the determination of aromatic and chlorinated hydrocarbons (benzene, toluene, o-, m-, p-xylene, trichloromethane, trichloroethane, trichloroethene and tetrachloroethene) in indoor and outdoor air at environmental concentration levels. The procedure can be easily extended to other VOCs. Using passive samplers the VOCs have been adsorbed onto charcoal during a four-week sampling period and subsequently desorbed with carbon disulfide. After injection with a cold split-splitless multi-injector the VOCs have been separated by capillary gas chromatography. Quantification has been achieved using an electron capture detector (ECD) and a flame ionization detector (FID) switched in series. A limit of about 1 g/m3 for aromatic hydrocarbons and of about 0.01 g/m3 for chlorinated hydrocarbons has been obtained. The procedure has been successfully applied in the framework of a field study to measure indoor and outdoor air concentrations in Essen and Borken, two differently polluted areas of Northrhine-Westphalia.  相似文献   

9.
Zhu L  Takahashi Y  Amagai T  Matsushita H 《Talanta》1997,45(1):113-118
A method for the quantitation of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air by high-performance liquid chromatography (HPLC) with a spectrofluorometric detection and programmed excitation and emission wavelength pairs is proposed. The mobile phase is a linear gradient of methanol-water. The relative standard deviations (n = 5) are in the range 0.38-1.7% at concentration levels of 0.69-11.40 ng ml(-1). The determination limits (S N = 10 ) are 0.5-15.9 pg. The proposed method was successfully applied to quantitate 12 PAHs in gas phase and particulates in indoor and outdoor air. The recoveries of PAHs from gas phase and particulates were 95.7-117.5 and 94.8-112.4%, respectively. This highly sensitive automatic HPLC analysis for PAHs both in gas phase and particulates can be applied to indoor and outdoor survey.  相似文献   

10.
A new procedure for the passive sampling in air of benzene, toluene, ethylbenzene and xylene isomers (BTEX) is proposed. A low-density polyethylene layflat tube filled with a mixture of solid phases provided a high versatility tool for the sampling of volatile compounds from air. Several solid phases were assayed in order to increase the BTEX absorption in the sampler and a mixture of florisil and activated carbon provided the best results. Direct head-space-gas chromatography–mass spectrometry (HS-GC–MS) measurement of the whole deployed sampler was employed for a fast determination of BTEX. Absorption isotherms were used to develop simple mathematical models for the estimation of BTEX time-weighted average concentrations in air. The proposed samplers were used to determine BTEX in indoor air environments and results were compared with those found using two reference methodologies: triolein-containing semipermeable membrane devices (SPMDs) and diffusive Radiello samplers. In short, the developed sampling system and analytical strategy provides a versatile, easy and rapid atmospheric monitor (VERAM).  相似文献   

11.
This article presents the results of an exploratory application of the Solid Phase MicroExtraction (SPME) technique to the analysis of BTEX (benzene, toluene, ethylbenzene and xylenes) at the microg/m3 level in outdoor and indoor air. The salient features of the method validation are reported. As shown by the various examples of field sampling described, SPME technique appears as a method of choice for fast qualitative analysis and quantitative determination of Volatile Organic Compounds (VOC). The small dimensions of the SPME sampling system and the short sampling time let envisage its utilisation for the rapid diagnostic of outdoor and indoor air quality.  相似文献   

12.
A method was developed for the determination of mercury in air, using preconcentration by amalgamation on gold absorbers followed by measurement by atomic fluorescence spectrometry (AFS). The system has a detection limit of ca. 2.0 pg and the precision is in the range 5–10% (relative standard deviation). The accuracy was confirmed by comparison with cold vapour atomic absorption spectrometry. The method was applied to the determination of gaseous mercury in both indoor and outdoor air. As a result of the sensitivity small sample volumes can be analysed and only short sampling times are required. The method is thus suitable for continuous monitoring of mercury and for the fast and reliable determination of gaseous mercury in the atmosphere, even at background levels.  相似文献   

13.
Levels of urban gaseous and particulate pollutants were investigated in the Cathedral of Cologne, Germany in the framework of the EU-project “VIDRIO”. The purpose of this study was to evaluate the influence of a protective double glazing system on the preservation of ancient stained glass windows by sampling at protected and unprotected windows (indoors, in the interspace and outdoor of the Cathedral). The interspace between the ancient stained glass window and the protective glazing is flushed in the Cathedral by indoor air, hence isolating the historic glass from the outdoor air and exposing it to indoor air on both sides of the glass panels. Concentrations of aggressive gaseous pollutants such as NO2, SO2, O3 and CO2 as well as elemental concentrations of bulk particles and relative abundances of single particles were surveyed at all sampling locations. Elemental concentrations in bulk particulate matter were found to be significantly lower inside the Cathedral in comparison to the outdoor air. This result is advantageous for the stained glass windows. Single particle analysis of the samples from Cologne showed also soil dust and organic particles as well as sulphates and nitrates, from which the latter two compounds are dangerous for the stained glass windows. On the base of the obtained results, it can be concluded that the protective glazing system in the Cathedral of Cologne can be considered as predominantly advantageous from both the gases' point of view (except for NO2-candles burning) and from the particles' point of view.  相似文献   

14.
分夏、冬季采集南昌大学前湖校区室外和3个不同室内环境中的PM2.5,测定有机碳(OC)和元素碳(EC),并分析室内、外碳气溶胶质量浓度及其分布特征;利用OC-EC关系式半定量分析室内排放源;结合室内、外二次有机碳(SOC)和SOC/OC的分布进一步讨论不同室内排放源的特征及对SOC的影响;对4个采样点的8个碳组分丰度特征比较分析,结果表明复印/打印机对室内OC的贡献高,8个碳组分的丰度分布特征与其它排放源具有较明显的差异。  相似文献   

15.
It has been evaluated the use of semipermeable membrane devices (SPMDs) as passive samplers of organophosphorus pesticides from air, in order to determine the contamination of working environments. Additionally, the use of SPMDs as portable samplers has been also considered. The analytical methodology for the determination of diazinon, chlorpyrifos-methyl, pirimiphos-methyl, chlorpyrifos and fenthion in SPMDs exposed to contaminated air was based on microwave-assisted extraction and gas chromatography with mass spectrometry determination. Limit of detection (LOD) values from 2 to 4 ng SPMD−1 and repeatability from 2 to 7% were obtained by using the aforementioned methodology. Theoretical calculated sampling rates were employed for the estimation of the pesticide concentration in air, by using the pesticide mass retained in the deployed SPMD. The obtained LOD values, for a sampling time of 7 days, were from 1 to 2 ng m−3. The evaluation of the air quality of a pesticide laboratory with an intensive use of diazinon and chlorpyrifos has been made in order to check the operation safety conditions.  相似文献   

16.
In recent years, the indoor air quality has been studied more frequently due to an increasing concern within the scientific community on the effects of indoor air quality upon health. The indoor air quality studies of schools have a large impact in both health and educational performance of children since they constitute a sensitive group with higher risk than adults, particularly vulnerable to pollutants due to their undeveloped airways. A total of 14 basic schools located in Lisbon city, Portugal, were selected for sampling the total particulate matter (TPM) by passive deposition into polycarbonate filters and to assess the indoor air quality. Compared to automatic samplers, this passive sampling method represents an easier and cheaper way to assess several indoor air quality environments with no interference in the classroom activities. The procedure was performed on four different campaigns during 2009–2010. The filter loads were measured by gravimetry with a 0.1-μg sensitivity balance and, afterwards, the TPM water-soluble ions content was assessed by ionic chromatography (Cl, NO3 , PO4 3− and SO4 2−); flame absorption (Na+, K+, Mg2+ and Ca2+). The performance characteristics of the methods, namely specificity, limit of detection, limit of quantification, working range, precision and trueness were evaluated. Measurement uncertainty was expressed in terms of precision and trueness. Precision under intralaboratory reproducibility conditions was estimated from triplicate analysis. The trueness component was estimated in terms of overall recovery using the reference material SPS-NUTR WW2 Batch 107, from Spectrapure Standards, Oslo, Norway, for anions and the certified reference material CRM 1643e, from NIST, Gaithersburg, MD for cations. Measurement uncertainty of the results obtained with the methods described in this work fulfilled the relative differences (RD) defined by the anion−cation balance in the extraction solutions of the particulate matter. Target RD values were defined: RD < 0.05.  相似文献   

17.
A method for the determination of low-molecular-weight amines from indoor and ambient air was developed using a concentration device followed by CE coupled with indirect spectrophotometric and mass spectrometric detection that enables a reliable, rapid-response and easy-to-operate method. In indirect detection method, the selected amines were separated from interfering metal ions and amino alcohols present in the samples with an imidazole-based buffer with ethanol and EDTA as modifier. By replacing imidazole with ammonium, the final buffer was applicable for MS detection for the analytes with m/z higher than 50. A novel monolithic polymer material based on poly(methacrylate-acrylate) copolymer was developed for sampling short-chain amines from the gaseous phase. The selected analysis conditions were applied to quantify the selected short-chain amines with detection limits for the whole procedure determined between 1 and 2 microg/filter when 40 L air was sampled with 1 L/min velocity. Improved linearity and precision were obtained when the raw, time-scaled electropherogram data were transformed into mobility-scale applied for the determination of the performance characteristics of the methods. The applicability of the process of data transformation into the mobility scale was demonstrated by studying the matrix effect of water-miscible metal working fluid (stable water-oil emulsion) and of ambient air as real samples. CE-indirect UV and CE-MS, combined with the possibility of rapid air sampling, can be useful for the estimation of short-term exposure of the selected biogenic amines.  相似文献   

18.
Volatile organic compounds were collected and analyzed from a variety of indoor and outdoor air samples to test whether human‐derived compounds can be readily detected in the air and if they can be associated with human occupancy or presence. Compounds were captured with thermal desorption tubes and then analyzed by gas chromatography with mass spectrometry. Isoprene, a major volatile organic compound in exhaled breath, was shown to be the best indicator of human presence. Acetone, another major breath‐borne compound, was higher in unoccupied or minimally occupied areas than in human‐occupied areas, indicating that its majority may be derived from exogenous sources. The association of endogenous skin‐derived compounds with human occupancy was not significant. In contrast, numerous compounds that are found in foods and consumer products were detected at elevated levels in the occupied areas. Our results revealed that isoprene and many exogenous volatile organic compounds consumed by humans are emitted at levels sufficient for detection in the air, which may be indicative of human presence.  相似文献   

19.
The influence of the physical properties of base silica materials and spacer length on chiral separation of enantiomers on ovomucoid (OVM)-bonded materials was investigated. With regard to the pore size of the base silica materials, the 300-Å materials gave higher enantioselectivity, than the 120-Å materials, despite the smaller amounts of bonded OVM proteins. However, higher resolution was obtained with the latter materials. With regard to the spacer length, aminopropyl (AP)-, aminobutyl-, N-(4-aminobutyl)-3-aminopropyl- and N-(6-aminohexyl)-3-aminopropyl-silica gels were activated by N,N′-di-succinimidyl carbonate (DSC) and the proteins were bound. The first two materials showed excellent chiral resolution properties for the solutes tested, and the AP materials gave higher enantioselectivity and resolution. On the other hand, only oxprenolol enantiomers were slightly resolved on the last two materials. Also, AP-silica gels activated by DSC were compared with glycerylpropyl (GP)-silica gels activated by 1,1′-carbonyldiimidazole. The former materials gave higher resolution for acidic and basic solutes despite the lower enantioselectivity, whereas for the unchanged hexobarbital the latter materials gave higher enantioselectivity and almost equal resolution. The above results reveal that the 120-Å base silica gels are more suitable than the 300- Å base silica gels for obtaining larger amounts of bonded OVM proteins and that a less hydrophobic spacer such as an AP group and a hydrophilic spacer such as a GP group are suitable.  相似文献   

20.
The Willems badge, a diffusive sampler for nitrogen dioxide, has previously been validated for ambient air measurements. This paper describes the laboratory and field validation of the Willems badge for personal sampling under working environment conditions. The mean sampling rate in the laboratory tests was 46 ml min(-1), with an RSD of 12%. No statistically significant effects on sampling rate of the sampling time, concentration of NO2 or relative humidity were found. A slightly decreased sampling rate was observed at low wind velocity. This was also confirmed during static sampling, which makes the sampler less appropriate for static sampling indoors. No back diffusion was observed. Storage of the samplers for two weeks before or after exposure did not affect the sampling rate. Our analysis is based on a modified colorimetric method, performed by FIA (flow injection analysis). This technique was compared to ion chromatography analysis. The use of ion chromatography lowered the detection limit from 11 to 2 microg m(-3) for an 8 h sample, and furthermore enabled the detection of other anions. In conclusion, the diffusive sampler was found to perform well for personal measurements in industrial environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号