首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
海洪  杨峰  李建平 《分析化学》2012,40(6):841-846
合成了Fe3O4@Au磁性纳米粒子,并根据单链寡聚核苷酸(ss-DNA)杂交原理,利用量子点电化学发光,构建了DNA电化学传感器.在磁控玻碳电极(MCGCE)表面,将5′-SH-ssDNA捕获探针自组装在Fe3O4@Au磁性纳米粒子上,然后与目标DNA互补的一端杂交形成dsDNA,再与双标记了量子点的5′-NH2-ssDNA-NH2-3′信号探针杂交形成三明治杂交的DNA.应用循环伏安法对DNA的固定与杂交进行了表征.目标DNA浓度在1.0×10-13~1.0×10-11 mol/L范围与其响应的ECL信号呈线性关系,检出限为1.8×10-14mol/L.由于采用量子点双标记法,检测的灵敏度显著提高.  相似文献   

2.
We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.
Figure
We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.  相似文献   

3.
Fe@Au and Ni@Au core–shell nanoparticles (NPs) were synthesized by liquid-phase reduction of iron and nickel compounds by sodium borohydride in an aqueous medium. Transmission electron microscopy, X-ray powder diffraction, and spectrophotometry were used to confirm the structure of the NPs and to determine their shape and the average core and shell size.  相似文献   

4.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA.  相似文献   

5.
Gao H  Qi X  Chen Y  Sun W 《Analytica chimica acta》2011,704(1-2):133-138
An electrochemical DNA biosensor was fabricated by self-assembling probe single-stranded DNA (ssDNA) with a nanogold decorated on ionic liquid modified carbon paste electrode (IL-CPE). IL-CPE was fabricated using 1-butylpyridinium hexafluorophosphate as the binder and the gold nanoparticles were electrodeposited on the surface of IL-CPE (Au/IL-CPE). Then mercaptoacetic acid was self-assembled on the Au/IL-CPE to obtain a layer of modified film, and the ssDNA probe was further covalently-linked with mercaptoacetic acid by the formation of carboxylate ester with the help of N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The hybridization reaction with the target ssDNA was monitored with methylene blue (MB) as the electrochemical indicator. Under the optimal conditions, differential pulse voltammetric responses of MB was proportional to the specific ssDNA arachis sequences in the concentration range from 1.0×10(-11) to 1.0×10(-6) mol L(-1) with the detection limit as 1.5×10(-12) mol L(-1) (3σ). This electrochemical DNA sensor exhibited good stability and selectivity with the discrimination ability of the one-base and three-base mismatched ssDNA sequences. The polymerase chain reaction product of arachis Arabinose operon D gene was successfully detected by the proposed method, which indicated that the electrochemical DNA sensor designed in this paper could be further used for the detection of specific ssDNA sequence.  相似文献   

6.
Wu S  Wang H  Tao S  Wang C  Zhang L  Liu Z  Meng C 《Analytica chimica acta》2011,686(1-2):81-86
A new protocol is proposed for magnetic loading and sensitive electrochemical detection of phenol via the tyrosinase cross-linked mesoporous magnetic core/shell microspheres. The mesoporous magnetic microspheres, characterized by transmission electron microscopy, N(2) adsorption/desorption isotherms, and magnetic curve displays high capacity for enzyme immobilization and strong magnetism to adhere to the magnetic electrode surface without any additional adhesive reagent. The biosensor exhibits a wide linear response to phenol ranging from 1.0×10(-9) to 1.0×10(-5) M, a high sensitivity of 78 μA mM(-1), a low detection limit of 1 nM, and a fast response rate (less than 5s). The proposed method is simple, rapid, inexpensive and convenient in electrode renewal, which is recommended as a promising experimental platform for wider applications in biosensing.  相似文献   

7.
应用恒电位在金基底表面电化学沉积纳米金,通过Au—S键将巯基修饰DNA探针固定在纳米金表面,与互补靶序列杂交,构建计时库仑电化学DNA传感器,并检测急性早幼粒细胞白血病(APL)PML/RARα融合基因.采用扫描电子显微术(SEM)与电化学交流阻抗技术(EIS)观察纳米金和表征DNA传感器的构筑过程.以氯化六氨合钌([Ru(NH3)6]Cl3,RuHex)作电化学杂交指示剂,由计时库仑法检测人工合成APL的PML/RARα融合基因.结果表明,纳米金能放大RuHex检测信号,杂交前后电量差值(ΔQ)与靶标链DNA浓度的对数(lgC)值在1.0×10-13~1.0×10-9mol.L-1范围内呈线性关系,检出下限3.7×10-14mol.L-1(S/N=3).该法操作简便、特异性好,有望用于实际样品的检测.  相似文献   

8.
We report the direct electrochemical and electrocatalytic properties of myoglobin (MB) on a multi-walled carbon nanotube/ciprofloxacin (MWCNT/CF) film-modified electrode. A highly homogeneous MWCNT thin-film was prepared on an electrode surface using ciprofloxacin (CF) as a dispersing agent. MB was then electrochemically deposited onto the MWCNT/CF-modified electrode. The MB/MWCNT/CF film was characterized by scanning electron microscopy and UV-visible spectroscopy (UV-vis). UV-vis spectra confirmed that MB retained its original state on the MWCNT/CF film. Direct electrochemical properties of MB on the MWCNT/CF film were investigated by cyclic voltammetry. The formal potential and electron transfer rate constant were evaluated in pH 7.2 buffer solution as -0.327V and 300s(-1), respectively. In addition, the MB/MWCNT/CF-modified electrode showed excellent electrocatalytic properties for the reduction of hydrogen peroxide (H(2)O(2)). The MB/MWCNT/CF-modified electrode was used for the detection of H(2)O(2) at concentrations from 1×10(-6)M to 7×10(-4)M in pH 7.2 buffer solution. Overall, the MB/MWCNT/CF-modified electrode was very stable and has potential for development as a H(2)O(2) sensor.  相似文献   

9.
The preparation of a fluorescent DNA probe based on the derivatization of the terminal hydroxyl group of the sugar moiety of a DNA primer and its applicability to the DNA hybridization assay are described. M13mp8 plasmid primer reacts with 2-(5-chlorocarbonyl-2-oxazolyl)-5,6-methylenedioxybenzofu ran in the presence of sodium azide to form the corresponding fluorescent probe, which can be used for the hybridization assay to the target DNA, M13mp8 plasmid vector. The detection limit of the DNA with the naked eye is 10 ng (approximately 300 fmol)/spot on filters for the hybridization assay.  相似文献   

10.
Na Zhou 《Talanta》2009,77(3):1021-183
A polyaniline nanofibers (PANnano)/carbon paste electrode (CPE) was prepared via dopping PANnano in the carbon paste. The nanogold (Aunano) and carbon nanotubes (CNT) composite nanoparticles were bound on the surface of the PANnano/CPE. The immobilization and hybridization of the DNA probe on the Aunano-CNT/PANnano films were investigated with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) using methylene blue (MB) as indicator, and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as redox probe. The voltammetric peak currents of MB increased dramatically owing to the immobilization of the probe DNA on the Aunano-CNT/PANnano films, and then decreased obviously owing to the hybridization of the DNA probe with the complementary single-stranded DNA (cDNA). The electron transfer resistance (Ret) of the electrode surface increased after the immobilization of the probe DNA on the Aunano-CNT/PANnano films and rose further after the hybridization of the probe DNA. The remarkable difference between the Ret value at the DNA-immobilized electrode and that at the hybridized electrode could be used for the label-free EIS detection of the target DNA. The loading of the DNA probe on Aunano-CNT/PANnano films was greatly enhanced and the sensitivity for the target DNA detection was markedly improved. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene and the polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from transgenically modified beans were determined with this label-free EIS DNA detection method. The dynamic range for detecting the PAT gene sequence was from 1.0 × 10−12 mol/L to 1.0 × 10−6 mol/L with a detection limit of 5.6 × 10−13 mol/L.  相似文献   

11.
Lu D  Zhang Y  Lin S  Wang L  Wang C 《The Analyst》2011,136(21):4447-4453
An electrochemical sensor based on a CdSe nanoparticles (NPs)-decorated poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (CdSe-PDDA-G) nanocomposite was fabricated for the sensitive detection of esculetin. The nanocomposite was characterized by X-ray diffraction (XRD), ultraviolet/visible spectra (UV-vis) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrochemical behaviors of esculetin on the CdSe-PDDA-G composite film-modified glassy carbon electrode (GCE). The experimental results indicated that the incorporation of CdSe NPs with PDDA-G greatly enhanced the electrochemical response of esculetin. This electrochemical sensor displayed satisfactory analytical performance for esculetin detection over a range from 1.0 × 10(-8) to 5.0 × 10(-5) mol L(-1) with a detection limit of 4.0 × 10(-9) mol L(-1) (S/N = 3). Moreover, the sensor also exhibited good reproducibility and stability, and could be used for the detection of esculetin in real samples with satisfactory results.  相似文献   

12.
朱化雨  张利  陈怀成  闫圣娟 《分析化学》2012,40(10):1549-1554
利用巯基乙胺将合成的金纳米粒子氨基化;基于纳米粒子负载羧基化的联吡啶钌和巯基DNA制得电化学发光信号探针;采用酶循环信号放大技术,获得大量含新增DNA的溶液来捕获信号探针;以金电极为载体,将巯基DNA自组装到电极表面,依次杂交互补DNA和信号探针,构建电化学发光生物传感器.在优化的条件下,此传感器对凝血酶具有良好的响应,在3.0× 10-13~6.0×10-11 mol/L范围内,凝血酶的浓度与发光强度呈良好的线性关系,检出限为1.8× 10-13 mol/L(3a).采用酶切循环放大技术制备的生物传感器具有灵敏度高,选择性和重现性良好等特点.  相似文献   

13.
Zhang F  Zeng L  Yang C  Xin J  Wang H  Wu A 《The Analyst》2011,136(13):2825-2830
A new approach for the detection of Hg(2+) is reported based on color changes from which gold nanoparticles (Au NPs) are surrounded by a layer of HgS quantum dots to form in situ Au@HgS core-shell nanostructures. The surface plasmon resonance (SPR) absorption of the gold core was changed due to a shell layer of HgS formed on the surface of the Au NPs, which brings the colour change of the aqueous solution. Therefore, Hg(2+) can be recognized by visualizing the colour change of the Au@HgS core-shell nanostructures, and can be detected quantitatively by measurement of the UV-vis spectra. Some effects on the detection of Hg(2+) were investigated in detail. This method was used to detect Hg(2+) with excellent selectivity and high sensitivity. In our method, the lowest detected concentrations for mercury ions were 5.0 × 10(-6) M observed by the naked eye and 0.486 nM as measured by UV-vis spectra. At the range from 8.0 × 10(-5) to 1.0 × 10(-8) M of Hg(2+), this method was shown to have a good linear relationship.  相似文献   

14.
铁氧化物/金磁性核壳纳米粒子的制备及其富集与SERS研究   总被引:3,自引:0,他引:3  
本文用种子生长法制备铁氧化物/金磁性核壳纳米粒子, 并利用SERS对其磁场靶向性进行了检测.  相似文献   

15.
An ultrasensitive surface‐enhanced Raman spectroscopy (SERS) sensor based on rolling‐circle amplification (RCA)‐increased “hot‐spot” was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core‐shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer‐by‐layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single‐stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10?12 to 1.0×10?8 M and a detection limit of 4.2×10?13 M , and showed good performance in real serum samples.  相似文献   

16.
《Electroanalysis》2005,17(23):2182-2189
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid‐modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well‐defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single‐stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the specific sequence related to the target bar gene with the dynamic range comprised between 1.0×10?7 mol/L to 1.0×10?4 mol/L. A detection limit of 2.25×10?8 mol/L of oligonucleotides can be estimated.  相似文献   

17.
In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-??-cyclodextrin (H2N-??-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-??-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).  相似文献   

18.
制备了单壁碳纳米管/金-四氧化三铁纳米粒子复合材料修饰玻碳电极,用循环伏安法研究了对硫磷在该电极上的电化学行为。该电极对对硫磷具有较好的富集和催化特性,在优化条件下,对硫磷的浓度与其峰电流在2.0×10-9~1.0×10-6 mol/L范围内呈线性关系,其检出限为1.0×10-9 mol/L。对1.0×10-7 mol/L的对硫磷溶液平行测定9次的RSD为3.9%(n=9)。用该电极对不同蔬菜样品中的对硫磷进行测定,平均回收率在96.0%~105.5%之间,相对标准偏差在3.3%~3.9%之间。  相似文献   

19.
A novel multifunctional microsphere with a fluorescent CdTe quantum dots (QDs) shell and a magnetic core (Fe(3)O(4)) has been successfully developed and prepared by a combination of the hydrothermal method and layer-by-layer (LBL) self-assembly technique. The resulting fluorescent Fe(3)O(4)@C@CdTe core/shell microspheres are utilized as a chemosensor for ultrasensitive Cu(2+) ion detection. The fluorescence of the obtained chemosensor could be quenched effectively by Cu(2+) ions. The quenching mechanism was studied and the results showed the existence of both static and dynamic quenching processes. However, static quenching is the more prominent of the two. The modified Stern-Volmer equation showed a good linear response (R(2) = 0.9957) in the range 1-10 μM with a quenching constant (K(sv)) of 4.9 × 10(4) M(-1). Most importantly, magnetic measurements showed that the Fe(3)O(4)@C@CdTe core/shell microspheres were superparamagnetic and they could be separated and collected easily using a commercial magnet in 10 s. These results obtained not only provide a way to solve the embarrassments in practical sensing applications of QDs, but also enable the fabrication of other multifunctional nanostructure-based hybrid nanomaterials.  相似文献   

20.
Xia Y  Zhu C 《The Analyst》2008,133(7):928-932
Type-II core/shell CdTe/CdSe quantum dots (QDs) were synthesized in aqueous medium by employing thiol-capped CdTe QDs as core template and CdCl(2) and Na(2)SeSO(3) as shell precursors, respectively. Compared with the original CdTe cores, the core/shell CdTe/CdSe QDs showed an obvious red-shifted emission with the color-tune capability to the near-infrared (NIR) wavelength, because of the formation of an indirect excitation. The prepared QDs exhibited high stability and moderate fluorescence quantum yields (10-20%), and their core/shell heterostructure was characterized by UV-vis absorption, steady-state and time-resolved fluorescence spectra, X-ray powder diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The fluorescence of the core/shell QDs could be markedly quenched by Cu(II), and approximate concentrations of other physiologically important cations, such as Zn(II), Ca(II), Na(I) and K(I) etc., had no effect on the fluorescence. Based on this, a simple and rapid method for Cu(II) determination was proposed using the NIR CdTe/CdSe QDs as fluorescent probes. Under optimal conditions, the response was linearly proportional to the concentration of Cu(II) between 0.05 to 50.0 x 10(-6) mol L(-1), the limit of detection was 2.0 x 10(-8) mol L(-1). The developed method was successfully applied to the detection of trace Cu(II) in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号