首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selective and sensitive fluorometric determination method for native fluorescent peptides has been developed. This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the amino groups of tryptophan (Trp)-containing peptides. In this detection process, we monitored the FRET from the native fluorescent Trp moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 10 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated FRET most effectively. The OPA derivatives of the native fluorescent peptides emitted OPA fluorescence (445 nm) through an intramolecular FRET process when they were excited at the excitation maximum wavelength of the Trp-containing peptides (280 nm). The generation of FRET was confirmed through comparison with the analysis of a non-fluorescent peptide (C-reactive protein fragment (77 - 82)) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the Trp-containing peptides when performing LC on a reversed-phase column. The detection limits (signal-to-noise ratio = 3) for the Trp-containing peptides, at a 20-microL injection volume, were 41 - 180 fmol. The sensitivity of the intramolecular FRET-forming derivatization method is higher than that of the system that takes advantage of the conventional detection of OPA derivatives. Moreover, native non-fluorescent amines and peptides in the sample monitored at FRET detection are weaker than those of conventional fluorescence detection.  相似文献   

2.
A fully automated amino acid analyzer using NBD-F (4- fluoro-7-nitro-2,1,3-benzoxadiazole) as a fluorescent derivatization reagent was developed. The whole analytical process was fully automated from derivatization, injection to HPLC separation and quantitation. The derivatization reaction conditions were re-evaluated and optimized. Amino acids were derivatized by NBD-F for 40 min at room temperature in the borate buffer (pH 9.5). The derivatives were separated within 100 min and fluorometrically detected at 540 nm with excitation at 470 nm. The detection limits for amino acids were in the range of 2.8-20 fmol. The calibration curves were linear over the range of 20 fmol to 20 pmol on column with the correlation coefficients of 0.999. The coefficients of variation were less than 5% at 3 pmol injection for all amino acids. Amino acids in rat plasma were determined by the proposed HPLC method.  相似文献   

3.
We developed an LC method for the sensitive and selective fluorometric determination of polythiols. This method employs pre-column intramolecular excimer-forming fluorescence derivatization with N-(1-pyrene)iodoacetamide followed by LC separation. Polythiols were converted to the corresponding dipyrene-labeled derivatives, and the derivatives afforded intramolecular excimer fluorescence (440–540 nm). After the optimization using dithiothreitol and dimercaprol as model polythiols, α-lipoic acid (LA) and α-lipoamide were determined with high sensitivity and selectivity. The detection limits for polythiols were 0.6–3.5 fmol on column. Furthermore, this method could be successfully applied to the determination of LA in commercial dietary supplements and in human urine.  相似文献   

4.
A liquid chromatographic (LC) method was developed for determination of abamectin (ABM) and ivermectin (IVM) in cattle plasma. The sample was extracted with acetonitrile and cleaned up on an alumina column. After conversion to stable fluorescent derivative with trifluoroacetic anhydride and N-methylimidazole, the sample was analyzed by LC with fluorescence detection (Ex 365 nm and Em 475 nm). Doramectin was used as an internal standard. Recoveries ranged from 91.2 to 100.7% for IVM and from 87.0 to 98.7% for ABM, with 1-50 ng/mL fortified samples. The coefficients of variation were <10.1%. The limit of detection was 0.02 ng/mL for ABM and IVM in 1.0 mL samples.  相似文献   

5.
A highly sensitive and selective fluorometric determination method for ornithine and lysine has been developed. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), followed by reversed-phase liquid chromatography (LC). The analytes, containing two amino moieties in a molecule, were converted to the corresponding dipyrene-labeled derivatives by reaction with PSE. The derivatives afforded intramolecular excimer fluorescence (450-550 nm) which can clearly be discriminated from the normal fluorescence (370-420 nm) emitted from PSE and monopyrene-labeled derivatives of monoamines. The structures of the derivatives and the emission of excimer fluorescence were confirmed by LC with mass spectrometry and with three-dimensional fluorescence detection system, respectively. The PSE derivatives of ornithine and lysine could be separated by reversed-phase LC on ODS column with isocratic elution. The detection limits (signal-to-noise ratio = 3) for ornithine and lysine were 3.5 and 3.7 fmol, respectively, for a 20-microl injection. Furthermore, this method had enough selectivity and sensitivity for the determination of ornithine and lysine in normal human urine.  相似文献   

6.
A highly sensitive and selective fluorimetric determination method for dicarboxylic acids (C5-C12) has been developed. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, 4-(1-pyrene)butyric acid hydrazide (PBH), followed by reversed-phase liquid chromatography (LC). The carboxylic acids were converted to the corresponding dipyrene-labeled derivatives by reaction with PBH in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The derivatives afforded intramolecular excimer fluorescence (450-550 nm) which can clearly be discriminated from the normal fluorescence (370-420 nm) emitted from PBH and monopyrene-labeled derivatives of monocarboxylic acids. The structures of the derivatives and the emission of excimer fluorescence were studied by LC with mass spectrometry and with spectrofluorimetry, respectively. The PBH derivatives of the carboxylic acids could be separated by reversed-phase LC on an ODS column with isocratic elution. The detection limits (signal-to-noise ratio = 3) were 1.3 fmol to undetectable for a 20-microl injection.  相似文献   

7.
A highly sensitive and selective fluorometric method for the determination of histamine and histidine has been developed. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent followed by reversed-phase liquid chromatography. The analytes, containing two amino moieties in a molecule, were converted to the corresponding dipyrene-labeled derivatives by derivatization. The derivatives afforded intramolecular excimer fluorescence (440 - 540 nm), which can clearly be discriminated from the normal fluorescence (360 - 420 nm) emitted from reagent blanks. The detection limits (signal-to-noise ratio = 3) were femto mole levels.  相似文献   

8.
The contribution of dissolved organic matter (DOM) released from phytoplankton (Microcystis aeruginosa) during cultivation and biodegradation was examined to clarify the causes of the organic pollution of Lake Biwa. Two peaks, peak 2 (retention time (RT) = 32 min) and peak 3 (RT = 35 min), were detected in the algal DOM released from Microcystis aeruginosa during cultivation and biodegradation by gel chromatography with a fluorescence detector (Ex = 340 nm, Em = 435 nm). As these peaks correspond with the peaks detected in the surface water of Lake Biwa, one can conclude that the algal DOM released from Microcystis aeruginosa during cultivation and biodegradation makes a considerable contribution to the refractory organic matter in Lake Biwa. Three fluorescence maxima were observed in the cultivation of Microcystis aeruginosa: a fulvic-like fluorescence peak (peak A) with Ex/Em values of 320/430 nm, a protein-like fluorescence peak (peak C) with Ex/Em values of 280/360 nm, and another peak with Ex/Em values of 240/370 nm. The fluorescence material of peak C has a larger MW than that of peak A. The algal-derived DOM from Microcystis aeruginosa has similar fluorescence to fulvic acid of soil origin but exhibits mainly hydrophilic characteristics. In the biodegradation of Microcystis aeruginosa, a fulvic-like fluorescence peak (peak B) with Ex/Em values of 250/440 nm and a peak with Ex/Em values of 320/380 nm were observed.  相似文献   

9.
A simple high-performance liquid chromatographic method with pre-column derivatization and fluorescence detection was developed and used for the analysis of free amino acids in islets of Langerhans; 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) served as pre-column derivatization reagent. Islets of Langerhans were separated from the pancreas of normal and obese rats, treated with pre-cooling methanol-water (80:20, v/v), and ultrasonicated to fragmentize the islets and effect deproteination. Several parameters influencing the derivatization reaction and chromatographic separation were optimized. Amino acid derivatives obtained under optimal conditions were separated on a C18 column with acetonitrile-acetate buffer as mobile phase and detected at 470 nm/540 nm (Ex/Em). Matrix effects were investigated and good linearities with correlation coefficients better than 0.9972 were obtained over a wide range of 0.42-42.11 microM for most of the amino acids. The detection limits (S/N = 3) were within the range of 6.1-51 nM. The precision of the method and recoveries were in the ranges of 1.43-10.76% (RSD%) and 85.07-108.82%, respectively. The analytical results showed that the serine content was markedly higher in normal rats than in obese rats, whereas methionine was of relatively lower content in both normal and obese rats.  相似文献   

10.
A highly sensitive, selective and simple method is described for the determination of histamine by high-performance liquid chromatography (HPLC) with fluorescence detection. The method is based on an intramolecular excimer-forming fluorescence derivatization of histamine with 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), followed by reversed-phase HPLC. Histamine, having two amino moieties in a molecule, was converted to the dipyrene-labeled derivative by reaction with PSE. The derivative afforded intramolecular excimer fluorescence (450-540 nm), which can clearly be discriminated from the monomer fluorescence (370-420 nm) emitted from PSE. Typically, a 10 micro L sample solution was mixed with 100 micro L of derivatization reagent solution, which was a mixture of 0.5 mm PSE in acetonitrile and 0.5 mm potassium carbonate in water (8:2, v/v). The derivatization was carried out at 100 degrees C for 90 min. The PSE derivative of histamine could be separated by reversed-phase ODS column with isocratic elution using acetonitrile:water (82:18, v/v) containing 0.03% triethylamine. The detection limit (singnal-to-noise ratio = 3) of histamine was 0.5 fmol for a 30 micro L injection. The method was successfully applied to the determination of histamine in human urine, and had enough selectivity and sensitivity for urinary histamine quantification.  相似文献   

11.
A pre-column derivatization method for the sensitive determination of amino acids using the tagging reagent 2-[2-(dibenzocarbazole)-ethoxy] ethyl chloroformate (DBCEC) followed by liquid chromatography with fluorescence detection has been developed. Identification of DBCEC-amino acids derivatives was by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS–MS). DBCEC can easily and quickly label amino acids, and derivatives are stable enough to be efficiently analyzed by LC. Separation of the derivatized amino acids had been optimized on Hypersil BDS C18 column. A perfect baseline separation for 20 amino acid derivatives was achieved with a ternary gradient elution program. The chromophore of dibenzocarbazole group, which comprise a large rigid planar structure with p–π conjugation system, resulted in a sensitive fluorescence detection for amino acid derivatives. The derivatized amino acids were detected with fluorescence detector with excitation maximum and emission maximum at 300 and 390 nm, respectively. Excellent linear responses were observed with coefficients of >0.9993, and detection limits were in the range of 0.78–5.13 fmol (signal-to-noise ratio of 3). The mean accuracy ranged from 83.4 to 98.7% for fluorescence detection. The mean inter-day precision for all standards was <4.2% of the expected concentration. Therefore, the proposed method was a highly sensitive and specific method for the quantitative analysis of amino acids from biological and natural environmental samples.  相似文献   

12.
A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.  相似文献   

13.
Zeng X  Zhang X  Zhu B  Jia H  Li Y  Xue J 《The Analyst》2011,136(19):4008-4012
A 4-aminonaphthalimide-based ratiometric fluorescent probe 1 employing the internal charge transfer (ICT) mechanism was designed and synthesized to detect bovine serum albumin (BSA). The interaction of 1 and BSA was investigated by fluorescence and UV-vis absorption spectroscopy. Upon treatment with BSA, the probe successfully exhibited a ratiometric fluorescent response at 540 nm and 480 nm. The fluorescent intensity ratio at 540 nm and 480 nm (F(540)/F(480)) increases linearly with BSA concentration in the range of 0-75.0 μg mL(-1) and the detection limit was about 2.4 ng mL(-1). Our strategy is expected to provide a methodology to quantify BSA either by a normal or by a ratiometric and colorimetric way with high sensitivity.  相似文献   

14.
Interferon α‐2b produced by Escherichia coli consists of 165 amino acids and contains two disulphide bonds; its purity was confirmed by LC‐UV (DAD)‐FLD and LC‐MS techniques. A C4 column was used with UV detection at 214 nm; diode array detector (DAD) spectra were recorded from 200–400 nm and fluorescence detection was performed at specific wavelengths of trypthophan emission and excitation. Peptide mapping was performed with trypsin. Peptides produced by trypsin digestion were analysed by LC‐UV (DAD)‐FLD, LC‐MS, and LC‐MS/MS using a C18 column. Amino acid sequence coverage was about 95%. UV spectra in the range from 200 nm to 400 nm, emission (Em) and excitation (Ex) spectra of each separated peptide were additionally compared with spectra of the same peptide produced by digestion of European Pharmacopaeia interferon α‐2b standard (spectral matching). The chromatogram of any interferon α‐2b (drug substance or certificated standard) sample produced in the same manner with the same amino acid composition should be similar to the chromatogram obtained by the method described in this paper. Molecular masses of peptides were obtained from MS experiments and MS/MS experiments gave additional structural information. The molecular mass of interferon α‐2b was obtained by MALDI‐TOF MS analysis in linear mode, with an accuracy comparable to the theoretical average mass ± 5 atomic mass units. The molecular mass was obtained from the deconvoluted ESI mass spectrum.  相似文献   

15.
Tsunoda M  Nonaka S  Funatsu T 《The Analyst》2005,130(10):1410-1413
A column-switching high-performance liquid chromatography (HPLC)-fluorescence detection method for the determination of three methylated arginines, N(G)-monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (asymmetric dimethyl-L-arginine, ADMA), and N(G),N(G)'-dimethyl-L-arginine (symmetric dimethyl-L-arginine, SDMA), which are endogenous nitric oxide synthase inhibitors, was developed. After fluorescence derivatization of plasma samples with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), the samples were injected into the HPLC system. The NBD-derivatized methylated arginines were trapped on a cation exchange column with filter to remove proteins, separated within 42 min on a reversed-phase column, and detected at an emission wavelength of 530 nm with excitation at 470 nm. The detection limits were 10 fmol for L-NMMA and 20 fmol for ADMA and SDMA with a signal-to-noise ratio of 3. A good linearity for calibration curves for each methylated arginine was observed within the range of 50-5000 fmol using homoarginine as an internal standard. The proposed method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.01, 0.73 +/- 0.02 and 0.41 +/- 0.05 micromol l(-1), respectively (n= 5).  相似文献   

16.
N(G)-Monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), and N(G),N(G)'-dimethyl-L-arginine (SDMA) are emerging cardiovascular risk factors. A high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of L-NMMA, ADMA and SDMA is described. The assay employed 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorescent derivatization reagent. After solid phase extraction with cation-exchange column, the methylated arginines were converted to fluorescent derivatives with NBD-F, and the derivatives were separated within 32 min on a reversed-phase column. Nomega-Propyl-L-arginine was Used as an internal standard. Extrapolated detection limits were 12 nM (12 fmol per injection) for L-NMMA and 20 nM (20 fmol per injection) for ADMA and SDMA, respectively, with a signal-to-noise ratio of 3. The calibration curves for L-NMMA, ADMA and SDMA were linear within the range of 50-5000 fmol. The method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in 200 microl of rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.03, 0.80 +/- 0.25 and 0.40 +/- 0.21 microM, respectively (n = 5).  相似文献   

17.
Detection of autofluorescence at the skin surface is highly influenced by melanin and hemoglobin. Epidermal absorption and scattering may also be an influencing factor and is represented in this article as a quantitative parameter, epidermal thickness. To examine this parameter we measured the 370 nm fluorescence in vivo after excitation with 330 nm and the 455 nm fluorescence after excitation with 330 and 370 nm. Measurements were performed on sun-exposed skin at the dorsal aspect of the forearm and shoulder and on nonexposed buttock skin. Skin pigmentation and redness of the same body sites were measured by reflectance spectroscopy. The thickness of the stratum corneum and the cellular part of epidermis was quantified by light microscopy of skin biopsies. Multiple regression analysis was used to find correlations between autofluorescence and the potential influencing factors. We found a highly significant correlation of skin autofluorescence with pigmentation and redness for both emission wavelengths (Em). A small but significant correlation to epidermal thickness was found only for excitation wavelength (Ex) 370 nm and Em455 nm if body site was included in the analysis. No correlation between Ex330:Em370 and Ex330:Em455 and thickness of epidermis was found. For practical use, correction of skin autofluorescence for pigmentation is essential, correction for redness is of less importance and correction for epidermal thickness is unnecessary.  相似文献   

18.
A simple screening method of organic aciduria by spectrofluorometric measurement of total dicarboxylic acids in human urine is described. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, 4-(1-pyrene)butanoic acid hydrazide (PBH). Dicarboxylic acids in urine were converted to the corresponding dipyrene-labeled derivatives by reaction with PBH in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and pyridine, and the derivatives afforded intramolecular excimer fluorescence (420-540 nm) which can clearly be discriminated from the normal fluorescence (360-420 nm) emitted from reagent blanks. The technique is so selective that it permits spectrofluorometric measurement of total amount of dicarboxylic acids by the direct derivatization of diluted urine samples. The same reaction mixture has also served as a liquid chromatographic (LC) sample for the separative determination of individual dicarboxylic acids. The spectrofluorometric data did not contradict with the LC data. These methods were usefully applied to preliminary screening test of glutaric aciduria. In conclusion, the present derivatization method allows rapid and direct determination of total amount of dicarboxylic acids in human urine samples.  相似文献   

19.
Huo F  Guijt R  Xiao D  Breadmore MC 《The Analyst》2011,136(11):2234-2241
A simple and novel two-colour fluorescence detector for capillary electrophoresis was created using a single bi-colour light emitting diode (LED), multi-band pass excitation and emission filters and a single detector. Excitation light from a blue/red (470/635 nm) bi-colour LED was filtered through a 390/482/563/640 nm multi-band bandpass filter, with emitted light filtered through a 446/523/600/677 nm multi-band bandpass filter before being detected using a photon counting detector. Sequential pulsing of the blue/red LED and deconvolution of the collected fluorescence data allowed extracted electropherograms to be obtained corresponding to excitation with the blue and red LEDs. Optimisation of the pulsed LED conditions revealed an optimum LED on-time of 50 ms, off-time of 30 ms with a pulsed current of 40 mA, giving an effective data acquisition rate of 6.25 Hz. The characteristics of this system were validated by the simultaneous separation and determination of six fluorescent dyes: fluorescein, FITC, coumarin 334, dibromo(R)fluorescein (Ex/Em 470/525 nm), and Cy 5 and the Agilent Bioanalyser DNA dye (Ex/Em 635/670 nm). Under optimum conditions, the detection limits for FITC, fluorescein and Cy 5 were 69 nM, 42 nM and 289 nM (S/N = 3), respectively. These were lower than those obtained with continuous operation of the individual wavelengths at a constant current of 20 mA, but were slightly higher than those obtained using dedicated single wavelength filter combinations designed specifically for use with these fluorophores. The intraday repeatability (n = 6) of migration times was less than 1.0% and less than 3.4% for peak areas, while interday (n = 3) migration time and peak area reproducibility were less than 0.9% and 3.6%, respectively. This simple detector is capable of performing quantitative two-wavelength excitation without the need for complex optics and light source configurations.  相似文献   

20.
Microchip electrophoresis for the short-time analysis of amino sugars is described. D-Glucosamine, D-galactosamine and their reduced forms were labeled with 4-nitro-2,1,3-benzoxadiazole 7-fluoride (NBD-F) at pH 6.0 and the fluorescent derivatives were purified on an octadecyl silica (ODS) gel plate. The derivatives were analyzed by electrophoresis on a microfabricated chip with a 33 mm long separation channel with argon laser-induced fluorescence detection. Under the established conditions, these amino sugarderivatives were well separated from each other within 60 s. Amino sugars of as small an amount as 0.5 fmol could be detected with a signal-to-noise (S/N) ratio of 3, and peak response showed good linearity between at least 0.8 and 8 fmol of samples with a relative standard deviation (RSD) of ca. 4%. This method was also applied to the analysis of amino sugar composition of O-linked glycans released from bovine submaxillary mucin with alkali in the presence of borohydride. The result of amino sugar composition analysis for individual O-glycans fractionated by high-performance liquid chromatography was quite useful for their identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号