首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel 1‐[(1R)‐1‐(6‐fluoro‐1,3‐benzothiazol‐2‐yl)ethyl]‐3‐substituted phenyl ureas were synthesized by the condensation of (1R)‐1‐(6‐fluoro‐1,3‐benzothiazol‐2‐yl)ethanamine with substituted phenyl isocyanates under mild conditions. Their structures were confirmed 1H, 13C, and 19F NMR spectra, and elemental analyses. The optical activities were confirmed by optical rotation measurements. The inhibition activity of 1‐[(1R)‐1‐(6‐fluoro‐1,3‐benzothiazol‐2‐yl)ethyl]‐3‐substituted phenyl ureas to acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE) was also tested. Preliminary bioassay indicated that the target ureas displayed excellent acetylcholinesterase and butyrylcholinesterase inhibition activity. J. Heterocyclic Chem., 2011.  相似文献   

2.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

3.
The first gold‐catalyzed photoredox C(sp2)?H difluoroalkylation and perfluoroalkylation of hydrazones with readily available RF?Br reagents is reported. The resulting gem‐difluoromethylated and perfluoroalkylated hydrazones are highly functionalized, versatile molecules. A mild reduction of the coupling products can efficiently produce gem‐difluoromethylated β‐amino phosphonic acids and β‐amino acid derivatives. In mechanistic studies, a difluoroalkyl radical intermediate was detected by an EPR spin‐trapping experiment, indicating that a gold‐catalyzed radical pathway is operating.  相似文献   

4.
《化学:亚洲杂志》2017,12(15):1865-1868
A facile synthesis of 2‐amino‐1,3‐oxazoles via CuI‐catalyzed oxidative cyclization of enamines and N ,N ‐dialkyl formamides has been developed. The reaction proceeds through an oxidative C−N bond formation, followed by an intramolecular C(sp2)−H bond functionalization/C−O cyclization in one pot. This protocol provides direct access to useful 2‐amino‐1,3‐oxazoles and features protecting‐group‐free nitrogen sources, readily available starting materials, a broad substrate scope and mild reaction conditions.  相似文献   

5.
A Pd(II)‐catalyzed enantioselective intramolecular amidation of both benzylic and unbiased methylene C(sp3)?H bonds for the straightforward synthesis of chiral β‐lactams from aliphatic carboxamides is reported. The combination of 2‐pyridinylisopropyl (PIP) auxiliary with 3,3’‐substituted BINOL ligands is crucial for the enhancement of both reactivity and enantiocontrol of differentiating unbiased methylene C(sp3)?H bonds. The desired chemoselective C—N reductive elimination was achieved by employing 2‐fluoro‐1‐iodo‐4‐nitrobenzene as oxidant.  相似文献   

6.
A metal‐free C(sp2)–C(sp2) cross‐coupling approach to highly congested (E)‐α‐naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4‐bromination of 1‐naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4‐bromo‐1‐naphthols with the α‐C(sp2) of enals through a Michael‐type Friedel–Crafts alkylation–dearomatization followed by a cyclopropanation ring‐opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp2)–C(sp2) bond from readily available unfunctionalized naphthols and enals catalyzed by non‐metal, readily available cyclic secondary amines under mild reaction conditions.  相似文献   

7.
《中国化学》2018,36(8):712-715
Herein, two efficient palladium‐catalyzed intermolecular oxidative coupling reactions of (Z)‐enamines with isocyanides via selective β‐C(sp2)‐H and/or C=C bond cleavage have been developed, leading to controllable chemodivergent and stereoselective construction of a wide range of (E)‐β‐carbamoylenamine derivatives containing strong intramolecular hydrogen bonds. Furthermore, possible reaction pathways for these transformations are proposed on the basis of preliminary mechanism studies.  相似文献   

8.
Kinetically protected 2‐silyl‐1,3‐diphosphapropenes that bear both sp2‐ and sp3‐type phosphorus atoms were employed in the preparation of gold complexes. The structural properties of the 1,3‐diphosphapropene digold(I) complexes were characterized by spectroscopic and crystallographic analyses, which revealed unique aurophilic interactions and conformational properties of the ligand. The 2‐silyl‐1,3‐diphosphapropene‐bis(chlorogold) complexes catalyzed cycloisomerization reactions of 1,6‐enyne derivatives even in the absence of silver co‐catalyst, and were able to be recovered after the reaction. The catalytic activity of the digold complexes primarily depended on the sp2‐type phosphorus atom and the silyl group, and could be tuned by the sp3‐phosphino group. Additionally, results on the catalytic activity of the digold complex in the presence and absence of silver salts showed considerable differences.  相似文献   

9.
A rhodium(II)‐catalyzed reaction of newly prepared 4‐acyl‐1‐sulfonyl‐1,2,3‐triazoles with benzene, and its derivatives, is investigated. Acceptor/acceptor carbenoids generated from 4‐acyltriazoles undergo selective insertion at aromatic C(sp2)−H bonds in the presence of benzylic C(sp3)−H bonds to produce N ‐sulfonylenaminones.  相似文献   

10.
A new ruthenium‐catalyzed cyclization of ortho‐(alkynyloxy)benzylamines to dihydro‐1,3‐benzoxazines is reported. The cyclization is thought to take place via the vinyl ruthenium carbene intermediates which are easily formed from [Cp*RuCl(cod)] and N2CHSiMe3. The mild reaction conditions and the efficiency of the procedure allow the easy preparation of a broad range of new 2‐vinyl‐2‐substituted 1,3‐benzoxazine derivatives. Rearrangement of an internal C(sp) in the starting material into a tetrasubstituted C(sp3) atom in the final 1,3‐benzoxazine is highly remarkable.  相似文献   

11.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

12.
3(2H)‐Furanones are efficiently generated from 3‐alkynyl oxireno[2,3‐b]chromenones by an Au/DDQ‐catalyzed domino reaction through a pathway composed of cyclization, C? C cleavage, nucleophilic addition, oxidation, and nucleophilic addition. It was found that stoichiometric AuCl3 or catalytic Au with stoichiometric DDQ can oxidize the benzylic sp3 C? H bond to facilitate nucleophilic addition.  相似文献   

13.
In the molecular structures of a series of substituted chalcones, namely (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one, C21H15FO2, (I), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one, C21H14F2O2, (II), (2E)‐1‐(4‐chlorophenyl)‐3‐(2‐fluoro‐4‐phenoxyphenyl)prop‐2‐en‐1‐one, C21H14ClFO2, (III), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methylphenyl)prop‐2‐en‐1‐one, C22H17FO2, (IV), and (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methoxyphenyl)prop‐2‐en‐1‐one, C22H17FO3, (V), the configuration of the keto group with respect to the olefinic double bond is scis. The molecules pack utilizing weak C—H...O and C—H...π intermolecular contacts. Identical packing motifs involving C—H...O interactions, forming both chains and dimers, along with C—H...π dimers and π–π aromatic interactions are observed in the fluoro, chloro and methyl derivatives.  相似文献   

14.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

15.
The crystal structure of 5‐fluoro‐1‐octanoyl­uracil [5‐fluoro‐1‐octanoyl­pyrimidine‐2,4(1H,3H)‐dione, C12H17FN2O3], a lipophilic prodrug of 5‐fluoro­uracil, is described. The 5‐fluoro­pyrimidine‐2,4(1H,3H)‐dione moiety is similar to the known structure of 1‐acetyl‐5‐fluoro­uracil. The 1‐octanoyl group and the 5‐fluoro­uracil moiety are essentially coplanar, with the octanoyl carbonyl group oriented towards the the ring C—H group and away from the nearer ring carbonyl group. The torsion angle C—N—C—O (from the ring CH group to the octanoyl carbonyl group) of 9.2 (2)° is similar to the corresponding torsion angles reported for 1‐acetyl‐5‐fluoro­uracil (17.3 and 1.6°) and 1,3‐di­acetyl‐5‐fluoro­uracil (8.8°).  相似文献   

16.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C? H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C? H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3)? C(sp3) bonds are elusive. Reported here is an asymmetric C? H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3)? C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

17.
Unsaturated N‐sulfonamides undergo a RhIII‐ catalyzed allylic C(sp3)? H activation followed by insertion with an exogenous internal alkyne. The reaction generates [3.3.0], [4.3.0], and [5.3.0] azabicyclic structures with excellent diastereoselectivity. Deuterium labeling experiments implicate a 1,3‐Rh shift as a key step in the mechanism.  相似文献   

18.
A copper(0)‐promoted direct reductive gem‐difluoromethylenation of unactivated aryl or alkenyl halides with benzo‐1,3‐azolic (oxa‐, thia‐ or aza‐) difluoromethyl bromides or 2‐bromodifluoromethyl‐1,3‐oxazoline has been developed for the construction of pharmaceutically important gem‐difluoromethylene‐linked twin molecules. The unique π‐conjugated aryl‐fused 1,3‐azolic moiety in difluoromethyl bromide substrates could stabilise the reaction intermediates, which promotes the reactivities, providing facile access to the cross‐coupling products in good to excellent yields, and allowing significant functional group tolerance. The reaction exhibits an enhanced neighbouring‐group‐participation effect. This method could provide a new strategy for the construction of gem‐difluoromethylene‐linked identical or nonidentical twin drugs through further functionalisation of 1,3‐azolic skeletons.  相似文献   

19.
Gold‐catalyzed C(sp)–C(sp2) and C(sp2)–C(sp2) cross‐coupling reactions are accomplished with aryldiazonium salts as the coupling partner. With the assistance of bpy ligand, gold(I) species were oxidized to gold(III) by diazonium without any external oxidants. Monitoring the reaction with NMR and ESI‐MS provided strong evidence for the nitrogen extrusion followed by AuIII reductive elimination as the key step.  相似文献   

20.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号