首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two‐dimensional (2D) magnetosonic wave propagation in magnetized quantum dissipative plasmas is studied. The plasma system is comprised of inertial ions, inertia‐less electrons, and positrons. The multi‐fluid quantum hydrodynamic model is used, in which quantum statistical and quantum tunnelling effects of electrons and positrons are included. Reductive perturbation analysis is performed to derive the Zabolotskaya–Khokhlov equation for the 2D propagation of a magnetosonic shock wave in a magnetized qauntum plasma. The effects of varying the different plasma parameters such as positron density and magnetic field intensity on the propagation characteristics of magnetosonic shock waves are discussed with non‐relativistic degenerate plasma parameters in astrophysical plasma situations.  相似文献   

2.
The linear and non‐linear dynamics of ion acoustic waves are investigated in three‐component magnetized plasma consisting of cold inertial ions and non‐thermal electrons and positrons. The non‐thermal components are modelled by the hybrid distribution, representing the combination of two (kappa and Cairn's) non‐thermal distributions. The relevant processes, including the slow rotation of plasma along the magnetic field axis and collision between ions and neutrals, are taken into consideration. It is shown that the non‐linear dynamics of the considered system are governed by the Zakharov–Kuznetsov equation in modified form. In the general dissipation regime, the effects of the two non‐thermal distributions on the solitary waves are compared. The effects of other plasma parameters, such as collisional and rotational frequency, are also discussed in detail.  相似文献   

3.
The effective one-fluid adiabatic magnetohydrodynamic (MHD) equations for a multicomponent plasma comprising of electrons, ions, and dust are used to investigate the nonlinear coupling of dust Alfven and dust acoustic waves in the presence of radiation pressure as well as the Jean’s term that arises in a self-gravitating plasma. In this context, the set of Zakharov equations are derived. The soliton solutions in the presence of radiation pressure and Jeans term are separately discussed. It is found that ordinary solitons are obtained in the absence of Jeans term whereas cusp solitons are found in the absence of radiation pressure. To the best of our knowledge, cusp solitons are obtained for the first time for a self-gravitating plasma with Jeans term for an electromagnetic wave in a dusty plasma. The modulational instability is also investigated in the presence of radiation pressure and Jeans term. It is found that the Jeans term drives the system modulationally unstable provided it dominates the dust acoustic and radiation pressure terms whereas the radiation pressure enhances the stability of the system. The relevance of the present investigation in the photodissociation region that separates the HII region from the dense molecular clouds is also pointed out.  相似文献   

4.
A theoretical investigation has been made on obliquely propagating ion‐acoustic (IA) solitary structures in a three components magneto‐plasma containing cold inertial ions, Boltzmann distributed positrons, and hot non‐thermal electrons. The Zakharov‐Kuznetsov equation has been derived by the reductive perturbation method, and its solitary wave solution has been analyzed. Multi‐dimensional instability has also studied by the small‐k (long wave‐length plane wave) perturbation expansion technique, which is found to exist in such a plasma. The effects of the external magnetic field, nonthermal electrons, obliqueness and temperature ratio have significantly modified the basic properties of small but finite‐amplitude IA solitary waves, such as amplitude, width, instability criterion and the growth rate. The present investigation contributes to the physics of the nonlinear IA waves in space and laboratory electron‐positron‐ion magneto‐plasmas in which wave damping produces an electron tail. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The nonlinear propagation of modified electron‐acoustic (mEA) shock waves in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non‐relativistic degenerate inertial cold electrons, both nonrelativistic and ultra‐relativistic degenerate hot electron and inertial positron fluids, and positively charged static ions) has been investigated theoretically. The well‐known Burgers type equation has been derived for both planar and nonplanar geometry by employing the reductive perturbation method. The shock wave solution has also been obtained and numerically analyzed. It has been observed that the mEA shock waves are significantly modified due to the effects of degenerate pressure and other plasma parameters arised in this investigation. The properties of planar Burgers shocks are quite different from those of nonplanar Burgers shocks. The basic features and the underlying physics of shock waves, which are relevant to some astrophysical compact objects (viz. non‐rotating white dwarfs, neutron stars, etc.), are briefly discussed. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this study, the properties of ion‐ and positron‐acoustic solitons are investigated in a magnetized multi‐component plasma system consisting of warm fluid ions, warm fluid positrons, q‐non‐extensive distributed positrons, q‐non‐extensive distributed electrons, and immobile dust particles. To drive the Korteweg–de Vries (KdV) equation, the reductive perturbation method is used. The effects of the ratio of the density of positrons to ions, the temperature of the positrons, and ions to electrons, the non‐extensivity parameters qe and qp , and the angle of the propagation of the wave with the magnetic field on the potential of ion‐ and positron‐acoustic solitons are also studied. The present investigation is applicable to solitons in fusion plasmas in the edge of tokamak.  相似文献   

7.
The modulational instability (MI) of the dust‐acoustic waves (DAWs) in an electron‐positron‐ion‐dust plasma (containing super‐thermal electrons, positrons, and ions along with negatively charged adiabatic dust grains) is investigated by the analysis of the non‐linear Schrödinger equation (NLSE). To derive the NLSE, the reductive perturbation method was employed. Two different parametric regions for stable and unstable DAWs are observed. The presence of super‐thermal electrons, positrons, and ions significantly modifies both the stable and unstable regions. The critical wave number kc (at which MI sets in) depends on the super‐thermal electron, positron, and ion, and adiabatic dust concentrations.  相似文献   

8.
The nonlinear dust‐ion‐acoustic (DIA) solitary structures have been studied in a dusty plasma, including the Cairns‐Gurevich distribution for electrons, both negative and positive ions, and immobile opposite polarity dust grains. The external magnetic field directed along the z‐axis is considered. By using the standard reductive perturbation technique and the hydrodynamics model for the ion fluid, the modified Zakharov–Kuznetsov equation was derived for small but finite amplitude waves and was provided the solitary wave solution for the parameters relevant. Using the appropriate independent variable, we could find the modified Korteweg–de Vries equation. By plotting some figures, we have discussed and emphasized how the different plasma values, such as the trapping parameter, the positive (or negative) dust number density, the non‐thermal electron parameter, and the ion cyclotron frequency, can influence the solitary wave structures. In addition, using the bifurcation theory of planar dynamical systems, we have extracted the centre and saddle points and illustrated the phase portrait of such a system for some particular plasma parameters. Finally, we have graphically investigated the behaviour of the solitary energy wave by changing the plasma values as well as by calculating the instability criterion; we have also discussed the growth rate of the solitary waves. The results could be useful for studying the physical mechanism of nonlinear propagation of DIA solitary waves in laboratory and space plasmas where non‐thermal electrons, pair‐ions, and dust particles can exist.  相似文献   

9.
The quantum effects on the plasma two-stream instability are studied by the dielectric function approach. The analysis suggests that the instability condition in a degenerate dense plasma deviates from the classical theory when the electron drift velocity is comparable to the Fermi velocity. Specifically, for a high wave vector comparable to the Fermi wave vector, a degenerate quantum plasma has larger regime of instability than predicted by the classical theory. A regime is identified, where there are unstable plasma waves with frequency 1.5 times of a normal Langmuir wave.  相似文献   

10.
The propagation properties of planar and non‐planar electron acoustic shock waves composed of stationary ions, cold electrons, and q‐non‐extensive hot electrons and positrons are studied in unmagnetized electron‐positron‐ion plasma. In this model, the Korteweg‐de Vries Burgers equation is obtained in the planar and non‐planar coordinates. We have investigated the combined action of the dissipation, non‐extensivity, density ratio of hot to cold electrons, concentration of positrons, and temperature difference of cold electrons, hot electrons, and positrons. It was found that the amplitude of shock wave in e‐p‐i plasma increases when the positron concentration and temperature increase. The same effect is observed in the case of kinematic viscosity η. Furthermore, it is noticed that spherical wave moves faster in comparison to the shock waves in cylindrical geometry. This difference arises due to the presence of the geometry term m/2τ. It should be noted that the contribution of the geometry factor comes through the continuity equation. Results of our work may be helpful to illustrate the different properties of shock wave features in different astrophysical and space environments like supernova, polar regions, and in the vicinity of black holes.  相似文献   

11.
A set of nonlinear equations which can self‐consistently describe the behavior of high frequency Electromagnetic (EM) waves in un‐magnetized, ultra‐relativistic electron‐positron (e‐p) plasmas is obtained on the basis of Vlasov‐Maxwell equations. Nonlinear wave‐wave, wave‐particle interactions lead to the coupling of high frequency EM waves with low frequency density perturbations which result from EM waves radiation pressure. The same as that in conventional electron‐ion (e‐i) plasmas, strong EM waves in e‐p plasmas will give rise to density depletion in which itself are trapped. But on the contrary to that in e‐i plasmas, there no longer exists electrostatic acoustic–like wave in e‐p plasmas due to the absence of mass difference. For linear polarized EM waves, a stationary EM soliton with a spiky structure will be formed. The possible relation of the localized field to pulsar radio pulse is discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.  相似文献   

13.
In this study, we present linear analysis of electrostatic counter-streaming instability in spin-polarized electron–positron–ion (e-p-i) plasma. With the aid of the separate spin evolution-quantum hydrodynamic (SSE-QHD) model, we derive the dispersion relation of counter-streaming instability. We numerically solve the dispersion and find four wave solutions: Langmuir wave, positron acoustic mode, and two electron and positron spin-dependent waves. It is noted that coupling of streaming and spin effects excites Langmuir instability and positron acoustic mode instability. However, in the absence of spin effect, only Langmuir instability will survive in e-p-i plasma. We have also discussed the effects of positron concentration, streaming speed, and spin polarization on the real frequency of waves and the growth rate. The present study may be helpful for understanding longitudinal wave propagation and instabilities in dense magnetized environments.  相似文献   

14.
The longitudinal response functions are used to generalize the dispersion properties of electron acoustic waves (EAWs) in the presence of quantum recoil, for isotropic, non‐relativistic, degenerate/non‐degenerate plasmas. In order to study the EAWs, the constituents of non‐degenerate (thermal) plasma are considered to be of two groups of electrons having different number density and temperature, namely the cold electrons and the hot electrons. Similarly in degenerate (Fermi) plasma the two population of electrons are considered to be the thinly populated and the thickly populated electrons. The sparsely populated electrons are termed as cold electrons while the densely populated ones are termed as hot electrons. The ions are stationary which form the neutralizing background. The absorption coefficients for Landau damping with the inclusion of the quantum recoil in both plasmas are calculated and discussed. The results are discussed in the context of laser‐produced plasma.  相似文献   

15.
《Physics letters. A》2020,384(13):126257
The propagation of electrostatic ion-acoustic cnoidal waves (IACWs) and solitons in a degenerated electron-positron-ion plasma with cold inertial ions and Thomas-Fermi distributed electrons and positrons is investigated. Adopting a reductive perturbation technique (RPT), the Korteweg-de Vries (KdV) equation is obtained and its cnoidal waves (CWs) solution is analyzed. The plasma configuration parameters (namely, the positron concentration and the Fermi temperature ratio of electron-to-positron) are shown to affect remarkably the dynamical characteristics of IACWs and solitons. The relevance of the present work to superdense white dwarfs is pointed out.  相似文献   

16.
The nonlinear dust acoustic solitary waves in a magnetized dusty plasma with nonthermal ions and variable dust electric charge is studied analytically. Using reductive perturbation method the Zakharov‐Kuznetsov (ZK) equation is derived and effect of nonthermal coefficient, external magnetic field, and variable dust electric charge on the amplitude and width of soliton in dusty plasma is investigated. With increasing the rate of dust charge variation with respect of plasma potential, the amplitude of generated solitary waves in magnetized dusty plasma increases to a constant magnitude while its width decreases. Increasing the nonthermal ions coefficient leads to a noticeable decrease in the amplitude of solitons while the width of soliton increases. The amplitude of generated solitary waves in such a dusty plasma is independent of applied external magnetic field but we will have more localized solitons with increasing the external magnetic field strength. It is found that solitons are strongly influenced by the direction of external magnetic field. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The propagation within a one‐dimensional photonic crystal of a single ultra‐short and ultra‐intense pulse delivered by an X‐ray free‐electron laser is analysed with the framework of the time‐dependent coupled‐wave theory in non‐linear media. It is shown that the reflection and the transmission of an ultra‐short pulse present a transient period conditioned by the extinction length and also the thickness of the structure for transmission. For ultra‐intense pulses, non‐linear effects are expected: they could give rise to numerous phenomena, bi‐stability, self‐induced transparency, gap solitons, switching, etc., which have been previously shown in the optical domain.  相似文献   

18.
In order to investigate the propagation characteristics of linear and non-linear ion acoustic waves (IAWs) in electron–positron–ion quantum plasma in the presence of external weak magnetic field, we have used a quantum hydrodynamic model, and degenerate statistics for the electrons and positrons are taken into account. It is found that the linear dispersion relation of the IAW was modified by the externally applied magnetic field. By using the reductive perturbation technique, a gyration-modified Korteweg-de Vries equation is derived for finite amplitude non-linear IAWs. Time-dependent numerical simulation shows the formation of an oscillating tail in front of the ion acoustic solitons in the presence of a weak magnetic field. It is also seen that the amplitude and width of solitons and oscillating tails are affected by the relevant plasma parameters such as quantum diffraction, positron concentration, and magnetic field. We have performed our analysis by extending it to account for approximate soliton solution by asymptotic perturbation technique and non-linear analysis via a dynamical system approach. The analytical results show the distortion of the shape of the localized soliton with time, and the non-linear analysis confirms the generation of oscillating tails.  相似文献   

19.
The filamentation instability of a current‐carrying plasma under the diffusion condition is investigated taking into account the Bohm potential and the Fermi electron pressure. Using quantum hydrodynamic equations, the dispersion relation and growth rate of the instability is obtained. It is found that the filamentation instability, in the presence of quantum effects, depends on various characteristic parameters such as: electron Fermi velocity, plasma number density, ion thermal velocity and electron drift velocity. Moreover, the wavelength region in which the instability occurs is more restricted and the minimum size of filaments is larger, in comparison with the classical case. It is also found that the growth rate of the instability is smaller in the presence of quantum effects. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This work investigates the interactions among solitons and their consequences in the production of rogue waves in an unmagnetized plasmas composing non-relativistic as well as relativistic degenerate electrons and positrons, and inertial non-relativistic helium ions. The extended Poincare′–Lighthill–Kuo(PLK) method is employed to derive the two-sided Korteweg–de Vries(Kd V) equations with their corresponding phase shifts. The nonlinear Schr o¨dinger equation(NLSE) is obtained from the modified Kd V(m Kd V) equation, which allows one to study the properties of the rogue waves. It is found that the Fermi temperature and quantum mechanical effects become pronounced due to the quantum diffraction of electrons and positrons in the plasmas. The densities and temperatures of the helium ions, degenerate electrons and positrons, and quantum parameters strongly modify the electrostatic ion acoustic resonances and their corresponding phase shifts due to the interactions among solitons and produce rogue waves in the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号