首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we consider a mathematical program with complementarity constraints. We present a modified relaxed program for this problem, which involves less constraints than the relaxation scheme studied by Scholtes (2000). We show that the linear independence constraint qualification holds for the new relaxed problem under some mild conditions. We also consider a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is C-stationary to the original problem under the MPEC linear independence constraint qualification and, if the Hessian matrices of the Lagrangian functions of the relaxed problems are uniformly bounded below on the corresponding tangent space, it is M-stationary. We also obtain some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices mentioned above are new and can be verified easily. This work was supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan. The authors are grateful to an anonymous referee for critical comments.  相似文献   

2.
In this paper, we present a new relaxation method for mathematical programs with complementarity constraints. Based on the fact that a variational inequality problem defined on a simplex can be represented by a finite number of inequalities, we use an expansive simplex instead of the nonnegative orthant involved in the complementarity constraints. We then remove some inequalities and obtain a standard nonlinear program. We show that the linear independence constraint qualification or the Mangasarian–Fromovitz constraint qualification holds for the relaxed problem under some mild conditions. We consider also a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is a weakly stationary point of the original problem and that, if the function involved in the complementarity constraints does not vanish at this point, it is C-stationary. We obtain also some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices of the Lagrangian functions of the relaxed problems are new and can be verified easily. Our limited numerical experience indicates that the proposed approach is promising.  相似文献   

3.
This paper presents an optimization model with performance constraints for two kinds of graph elements layout problem. The layout problem is partitioned into finite subproblems by using graph theory and group theory, such that each subproblem overcomes its on-off nature about optimal variable. Furthermore each subproblem is relaxed and the continuity about optimal variable doesn’t change. We construct a min-max problem which is locally equivalent to the relaxed subproblem and develop the first order necessary and sufficient conditions for the relaxed subproblem by virtue of the min-max problem and the theories of convex analysis and nonsmooth optimization. The global optimal solution can be obtained through the first order optimality conditions.  相似文献   

4.
We consider a general optimization problem which is an abstract formulation of a broad class of state-constrained optimal control problems in relaxed form. We describe a generalized mixed Frank–Wolfe penalty method for solving the problem and prove that, under appropriate assumptions, accumulation points of sequences constructed by this method satisfy the necessary conditions for optimality. The method is then applied to relaxed optimal control problems involving lumped as well as distributed parameter systems. Numerical examples are given.  相似文献   

5.
利用互补问题的Lagrange函数, 给出了互补约束优化问题\,(MPCC)\,的一种新松弛问题. 在较弱的条件下, 新松弛问题满足线性独立约束规范. 在此基础上, 提出了求解互补约束优化问题的乘子松弛法. 在MPCC-LICQ条件下, 松弛问题稳定点的任何聚点都是MPCC的M-稳定点. 无需二阶必要条件, 只在ULSC条件下, 就可保证聚点是MPCC的B-稳定点. 另外, 给出了算法收敛于B-稳定点的新条件.  相似文献   

6.
We study relaxed stochastic control problems where the state equation is a one dimensional linear stochastic differential equation with random and unbounded coefficients. The two main results are existence of an optimal relaxed control and necessary conditions for optimality in the form of a relaxed maximum principle. The main motivation is an optimal bond portfolio problem in a market where there exists a continuum of bonds and the portfolio weights are modeled as measure-valued processes on the set of times to maturity.  相似文献   

7.
We study the uniqueness and explicit derivation of the relaxed optimal solutions, corresponding to the minimization of weighted sum of potential energies for a mixture of two isotropic conductive materials on an annulus. Recently, it has been shown by Burazin and Vrdoljak that even for multiple-state problems, if the domain is spherically symmetric, then the proper relaxation of the problem by the homogenization method is equivalent to a simpler relaxed problem, stated only in terms of local proportions of given materials. This enabled explicit calculation of a solution on a ball, while problems on an annulus appeared to be more tedious. In this paper, we discuss the uniqueness of a solution of this simpler relaxed problem, when the domain is an annulus and we use the necessary and sufficient conditions of optimality to present a method for explicit calculation of the unique solution of this simpler proper relaxation, which is demonstrated on an example.  相似文献   

8.

In this paper, we are concerned with optimal control problems where the system is driven by a stochastic differential equation of the Ito type. We study the relaxed model for which an optimal solution exists. This is an extension of the initial control problem, where admissible controls are measure valued processes. Using Ekeland's variational principle and some stability properties of the corresponding state equation and adjoint processes, we establish necessary conditions for optimality satisfied by an optimal relaxed control. This is the first version of the stochastic maximum principle that covers relaxed controls.  相似文献   

9.
We consider a general nonlinear optimal control problem for systems governed by ordinary differential equations with terminal state constraints. No convexity assumptions are made. The problem, in its so-called relaxed form, is discretized and necessary conditions for discrete relaxed optimality are derived. We then prove that discrete optimality [resp., extremality] in the limit carries over to continuous optimality [resp., extremality]. Finally, we prove that limits of sequences of Gamkrelidze discrete relaxed controls can be approximated by classical controls.  相似文献   

10.
We derive sufficient conditions for controllability and necessary conditions for minimum in nonsmooth optimal control problems defined by differential or functional-integral equations with isoperimetric and unilateral restrictions. We consider the cases when the controls are relaxed or chosen fromabundant sets of original (ordinary) controls (which include most, or all, of the control sets studied in the literature). We prove that, if there exist optimal strictly original controls (that is, controls that are optimal in an abundant set but not among relaxed controls), then the problem admits abnormal extremals. We also study the abnormality of the optimal strictly original controls themselves.  相似文献   

11.
A minimum-time problem is considered, where the final point is locally controllable. It is shown that it is possible to construct a suboptimal control with a transfer time close to the optimal transfer time of the relaxed system. The resulting trajectory will satisfy initial and final conditions. Furthermore, it is shown that, if an optimal solution exists for the problem, then this optimal solution is also an optimal solution of the relaxed problem. In this case, the relaxed problem need not be solved.The authors wish to thank Dr. D. Hazan, Scientific Department, Ministry of Defense, Israel, for a fruitful discussion of this problem.  相似文献   

12.
彭定涛  唐琦  张弦 《数学学报》2022,(2):243-262
本文主要研究损失函数为凸函数且带有约束的组稀疏正则回归问题及组稀疏正则项的精确连续Capped-L_(1)松弛问题.首先对组Capped-L_(1)松弛问题定义了三类稳定点:D(irectional)-稳定点、C(ritical)-稳定点、L(ifted)-稳定点,然后刻画了这三类稳定点之间的关系.进一步,给出了组Capped-L_(1)松弛问题和原始组稀疏正则问题的最优性条件,并从全局解和局部解角度讨论了松弛问题和原问题解的等价关系.  相似文献   

13.
This paper studies a scalar minimization problem with an integral functional of the gradient under affine boundary conditions. A new approach is proposed using a minimal and a maximal solution to the convexified problem. We prove a density result: any relaxed solution continuously depending on boundary data may be approximated uniformly by solutions of the nonconvex problem keeping continuity relative to data. We also consider solutions to the nonconvex problem having Lipschitz dependence on boundary data with the best Lipschitz constant.  相似文献   

14.
Strang [18] introduced optimization problems on a Euclidean domain which are closely related with problems in mechanics and noted that the problems are regarded as continuous versions of famous max-flow and min-cut problems. In [15] we generalized the problems and called the generalized problems max-flow and min-cut problems of Strang's type. In this paper we formulate a relaxed version of the min-cut problem of Strang's type and prove the existence of optimal solutions under some suitable conditions. The conditions are essential. In fact, there is an example of the relaxed version which has no optimal solutions if the conditions are not fulfilled. We give such an example in the final section. Accepted 8 October 1998  相似文献   

15.
We consider the problem of optimizing the shape and position of the damping set for the internal stabilization of the linear wave equation in RN, N=1,2. In a first theoretical part, we reformulate the problem into an equivalent non-convex vector variational one using a characterization of divergence-free vector fields. Then, by means of gradient Young measures, we obtain a relaxed formulation of the problem in which the original cost density is replaced by its constrained quasi-convexification. This implies that the new relaxed problem is well-posed in the sense that there exists a minimizer and, in addition, the infimum of the original problem coincides with the minimum of the relaxed one. In a second numerical part, we address the resolution of the relaxed problem using a first-order gradient descent method. We present some numerical experiments which highlight the influence of the over-damping phenomena and show that for large values of the damping potential the original problem has no minimizer. We then propose a penalization technique to recover the minimizing sequences of the original problem from the optimal solution of the relaxed one.  相似文献   

16.
In the present paper, we investigate an approximation technique for relaxed optimal control problems. We study control processes governed by ordinary differential equations in the presence of state, target, and integral constraints. A variety of approximation schemes have been recognized as powerful tools for the theoretical studying and practical solving of Infinite-dimensional optimization problems. On the other hand, theoretical approaches to the relaxed optimal control problem with constraints are not sufficiently advanced to yield numerically tractable schemes. The explicit approximation of the compact control set makes it possible to reduce the sophisticated relaxed problem to an auxiliary optimization problem. A given trajectory of the relaxed problem can be approximated by trajectories of the auxiliary problem. An optimal solution of the introduced optimization problem provides a basis for the construction of minimizing sequences for the original optimal control problem. We describe how to carry out the numerical calculations in the context of nonlinear programming and establish the convergence properties of the obtained approximations.The authors thank the referees for helpful comments and suggestions.  相似文献   

17.
This paper deals with chaos synchronization for master slave piecewise linear systems. The synchronization problem is formulated as a global stability problem of error synchronization dynamics. New sufficient conditions are provided using a Lyapunov approach and the so-called S-procedure. We show that the synchronization problem can be solved as an optimization problem subject to a set of Linear Matrix Inequalities (LMI) for which a state feedback controller is designed efficiently. The effectiveness of the proposed solution is verified via simulation results using the original Chua’s circuit model. Furthermore, it will be proven that the new sufficient conditions relaxed the conservatism of previous existing works.  相似文献   

18.
In this paper, we propose a new deterministic global optimization method for solving nonlinear optimal control problems in which the constraint conditions of differential equations and the performance index are expressed as polynomials of the state and control functions. The nonlinear optimal control problem is transformed into a relaxed optimal control problem with linear constraint conditions of differential equations, a linear performance index, and a matrix inequality condition with semidefinite programming relaxation. In the process of introducing the relaxed optimal control problem, we discuss the duality theory of optimal control problems, polynomial expression of the approximated value function, and sum-of-squares representation of a non-negative polynomial. By solving the relaxed optimal control problem, we can obtain the approximated global optimal solutions of the control and state functions based on the degree of relaxation. Finally, the proposed global optimization method is explained, and its efficacy is proved using an example of its application.  相似文献   

19.
We consider minimax optimization problems where each term in the objective function is a continuous, strictly decreasing function of a single variable and the constraints are linear. We develop relaxation-based algorithms to solve such problems. At each iteration, a relaxed minimax problem is solved, providing either an optimal solution or a better lower bound. We develop a general methodology for such relaxation schemes for the minimax optimization problem. The feasibility tests and formulation of subsequent relaxed problems can be done by using Phase I of the Simplex method and the Farkas multipliers provided by the final Simplex tableau when the corresponding problem is infeasible. Such relaxation-based algorithms are particularly attractive when the minimax optimization problem exhibits additional structure. We explore special structures for which the relaxed problem is formulated as a minimax problem with knapsack type constraints; efficient algorithms exist to solve such problems. The relaxation schemes are also adapted to solve certain resource allocation problems with substitutable resources. There, instead of Phase I of the Simplex method, a max-flow algorithm is used to test feasibility and formulate new relaxed problems.Corresponding author.Work was partially done while visiting AT&T Bell Laboratories.  相似文献   

20.
In this note, we give sufficient conditions for a domination property to hold for a vector maximization problem with respect to cones. A previously developed result concerning this domination property easily follows from these conditions. We also show that, if one of these conditions is relaxed, then the domination property may not hold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号