首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a general k-level uncapacitated facility location problem (k-GLUFLP), we are given a set of demand points, denoted by D, where clients are located. Facilities have to be located at a given set of potential sites, which is denoted by F in order to serve the clients. Each client needs to be served by a chain of k different facilities. The problem is to determine some sites of F to be set up and to find an assignment of each client to a chain of k facilities so that the sum of the setup costs and the shipping costs is minimized. In this paper, for a fixed k, an approximation algorithm within a factor of 3 of the optimum cost is presented for k-GLUFLP under the assumption that the shipping costs satisfy the properties of metric space. In addition, when no fixed cost is charged for setting up the facilities and k=2, we show that the problem is strong NP-complete and the constant approximation factor is further sharpen to be 3/2 by a simple algorithm. Furthermore, it is shown that this ratio analysis is tight.  相似文献   

2.
In this paper, we consider k-echelon extensions of the deterministic one warehouse multi-retailer problem. We give constant factor approximation algorithms for some of these extensions when k is fixed. We focus first on the case without backorders and we give a \((2k-1)\)-approximation algorithm under general assumptions on the evolution of the holding costs as products move toward the final customers. We then improve this result to a k-approximation when the holding costs are monotonically non-increasing or non-decreasing (which is a natural situation in practice). Finally we address problems with backorders: we give a 3-approximation for the one-warehouse multi-retailer problem with backlog and a k-approximation algorithm for the k-level Joint Replenishment Problem with backlog (a variant where inventory can only be kept at the final retailers). Ours results are the first constant approximation algorithms for those problems. In addition, we demonstrate the potential of our approach on a practical case. Our preliminary experiments show that the average optimality gap is around 15%.  相似文献   

3.
The double loop network (DLN) is a circulant digraph with n nodes and outdegree 2. It is an important topological structure of computer interconnection networks and has been widely used in the designing of local area networks and distributed systems. Given the number n of nodes, how to construct a DLN which has minimum diameter? This problem has attracted great attention. A related and longtime unsolved problem is for any given non-negative integer k, is there an infinite family of k-tight optimal DLN? In this paper, two main results are obtained (1) for any k ≥ 0, the infinite families of k-tight optimal DLN can be constructed, where the number n(k,e,c) of their nodes is a polynomial of degree 2 in e with integral coefficients containing a parameter c. (2) for any k ≥ 0,an infinite family of singular k-tight optimal DLN can be constructed.  相似文献   

4.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

5.
The notion of degree-constrained spanning hierarchies, also called k-trails, was recently introduced in the context of network routing problems. They describe graphs that are homomorphic images of connected graphs of degree at most k. First results highlight several interesting advantages of k-trails compared to previous routing approaches. However, so far, only little is known regarding computational aspects of k-trails. In this work we aim to fill this gap by presenting how k-trails can be analyzed using techniques from algorithmic matroid theory. Exploiting this connection, we resolve several open questions about k-trails. In particular, we show that one can recognize efficiently whether a graph is a k-trail, and every graph containing a k-trail is a \((k+1)\)-trail. Moreover, further leveraging the connection to matroids, we consider the problem of finding a minimum weight k-trail contained in a graph G. We show that one can efficiently find a \((2k-1)\)-trail contained in G whose weight is no more than the cheapest k-trail contained in G, even when allowing negative weights. The above results settle several open questions raised by Molnár, Newman, and Seb?.  相似文献   

6.
We consider the k-level facility location problem with soft capacities (k-LFLPSC). In the k-LFLPSC, each facility i has a soft capacity u i along with an initial opening cost f i ≥ 0, i.e., the capacity of facility i is an integer multiple of u i incurring a cost equals to the corresponding multiple of f i . We firstly propose a new bifactor (ln(1/β)/(1 ?β),1+2/(1 ?β))-approximation algorithm for the k-level facility location problem (k-LFLP), where β ∈ (0, 1) is a fixed constant. Then, we give a reduction from the k-LFLPSC to the k-LFLP. The reduction together with the above bifactor approximation algorithm for the k-LFLP imply a 5.5053-approximation algorithm for the k-LFLPSC which improves the previous 6-approximation.  相似文献   

7.
Detecting low-diameter clusters is an important graph-based data mining technique used in social network analysis, bioinformatics and text-mining. Low pairwise distances within a cluster can facilitate fast communication or good reachability between vertices in the cluster. Formally, a subset of vertices that induce a subgraph of diameter at most k is called a k-club. For low values of the parameter k, this model offers a graph-theoretic relaxation of the clique model that formalizes the notion of a low-diameter cluster. Using a combination of graph decomposition and model decomposition techniques, we demonstrate how the fundamental optimization problem of finding a maximum size k-club can be solved optimally on large-scale benchmark instances that are available in the public domain. Our approach circumvents the use of complicated formulations of the maximum k-club problem in favor of a simple relaxation based on necessary conditions, combined with canonical hypercube cuts introduced by Balas and Jeroslow.  相似文献   

8.
A graph G is called an (n,k)-graph if κ(G-S)=n-|S| for any S ? V(G) with |S| ≤ k, where ?(G) denotes the connectivity of G. Mader conjectured that for k ≥ 3 the graph K2k+2?(1-factor) is the unique (2k, k)-graph. Kriesell has settled two special cases for k = 3,4. We prove the conjecture for the general case k ≥ 5.  相似文献   

9.
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of l k,s -singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest l k,s -singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest l k,s -singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.  相似文献   

10.
In this paper, the authors present an s-dependent conjugate gradient method for unconstrained optimization problem and make two different kinds of estimations of upper bounds of β k with respect to \(\beta_{k}^{\mathrm{FR}}\) which are called dependent ratio. The global convergence of s-dependent GFR conjugate gradient method using several step-size rules is obtained.  相似文献   

11.
A relationship between the general linear group of degree n over a finite field and the integer partitions of n into parts of k different magnitudes was investigated recently by the author. In this paper, we use a variation of the classical binomial transform to derive a new connection between partitions into parts of k different magnitudes and another finite classical group, namely the symplectic group Sp. New identities involving the number of partitions of n into parts of k different magnitudes are introduced in this context.  相似文献   

12.
In 2005, Goodman and Pollack introduced the concept of an allowable interval sequence, a combinatorial object which encodes properties of a family of pairwise disjoint convex sets in the plane. They, Dhandapani, and Holmsen used this concept to address Tverberg’s (1,k)-separation problem: How many pairwise disjoint compact convex sets in the plane are required to guarantee that one can be separated by a line from k others? (Denote this number by f k .) A new proof was provided that f 2=5, a result originally obtained by Tverberg himself, and the application of allowable interval sequences to the case of general k was left as an open problem. Hope and Katchalski, using other methods, proved in 1990 that 3k?1≤f k ≤12(k?1). In this paper, we apply the method of allowable interval sequences to give an upper bound on f k of under 7.2(k?1), shrinking the range given by Hope and Katchalski by more than half. For a family of translates we obtain a tighter upper bound of approximately 5.8(k?1).  相似文献   

13.
The (r, d)-relaxed edge-coloring game is a two-player game using r colors played on the edge set of a graph G. We consider this game on forests and more generally, on k-degenerate graphs. If F is a forest with Δ(F)=Δ, then the first player, Alice, has a winning strategy for this game with r=Δ?j and d≥2j+2 for 0≤j≤Δ?1. This both improves and generalizes the result for trees in Dunn, C. (Discret. Math. 307, 1767–1775, 2007). More broadly, we generalize the main result in Dunn, C. (Discret. Math. 307, 1767–1775, 2007) by showing that if G is k-degenerate with Δ(G)=Δ and j∈[Δ+k?1], then there exists a function h(k,j) such that Alice has a winning strategy for this game with r=Δ+k?j and dh(k,j).  相似文献   

14.
The k-uniform s-hypertree G = (V,E) is an s-hypergraph, where 1 ≤ sk - 1; and there exists a host tree T with vertex set V such that each edge of G induces a connected subtree of T. In this paper, some properties of uniform s-hypertrees are establised, as well as the upper and lower bounds on the largest H-eigenvalue of the adjacency tensor of k-uniform s-hypertrees in terms of the maximal degree Δ. Moreover, we also show that the gap between the maximum and the minimum values of the largest H-eigenvalue of k-uniform s-hypertrees is just Θ(Δ s/k ).  相似文献   

15.
Let G be an abelian group of order n. The sum of subsets A1,...,Ak of G is defined as the collection of all sums of k elements from A1,...,Ak; i.e., A1 + A2 + · · · + Ak = {a1 + · · · + ak | a1A1,..., akAk}. A subset representable as the sum of k subsets of G is a k-sumset. We consider the problem of the number of k-sumsets in an abelian group G. It is obvious that each subset A in G is a k-sumset since A is representable as A = A1 + · · · + Ak, where A1 = A and A2 = · · · = Ak = {0}. Thus, the number of k-sumsets is equal to the number of all subsets of G. But, if we introduce a constraint on the size of the summands A1,...,Ak then the number of k-sumsets becomes substantially smaller. A lower and upper asymptotic bounds of the number of k-sumsets in abelian groups are obtained provided that there exists a summand Ai such that |Ai| = n logqn and |A1 +· · ·+ Ai-1 + Ai+1 + · · ·+Ak| = n logqn, where q = -1/8 and i ∈ {1,..., k}.  相似文献   

16.
A proper incidentor coloring is called a (k, l)-coloring if the difference between the colors of the final and initial incidentors ranges between k and l. In the list variant, the extra restriction is added: the color of each incidentor must belong to the set of admissible colors of the arc. In order to make this restriction reasonable we assume that the set of admissible colors for each arc is an integer interval. The minimum length of the interval that guarantees the existence of a list incidentor (k, l)-coloring is called a list incidentor (k, l)-chromatic number. Some bounds for the list incidentor (k, l)-chromatic number are proved for multigraphs of degree 2 and 4.  相似文献   

17.
We obtain exact constants in Jackson-type inequalities for smoothness characteristics Λk(f), k ∈ N, defined by averaging the kth-order finite differences of functions fL2. On the basis of this, for differentiable functions in the classes L2r, r ∈ N, we refine the constants in Jackson-type inequalities containing the kth-order modulus of continuity ωk. For classes of functions defined by their smoothness characteristics Λk(f) and majorants Φ satisfying a number of conditions, we calculate the exact values of certain n-widths.  相似文献   

18.
Let (F k,n ) n and (L k,n )n be the k-Fibonacci and k-Lucas sequence, respectively, which satisfies the same recursive relation a n+1 = ka n + a n?1 with initial values F k,0 = 0, F k,1 = 1, L k,0 = 2 and L k,1 = k. In this paper, we characterize the p-adic orders ν p (F k,n ) and ν p (L k,n ) for all primes p and all positive integers k.  相似文献   

19.
The matrix completion problem is easy to state: let A be a given data matrix in which some entries are unknown. Then, it is needed to assign “appropriate values” to these entries. A common way to solve this problem is to compute a rank-k matrix, B k , that approximates A in a least squares sense. Then, the unknown entries in A attain the values of the corresponding entries in B k . This raises the question of how to determine a suitable matrix rank. The method proposed in this paper attempts to answer this question. It builds a finite sequence of matrices \(B_{k}, k = 1, 2, \dots \), where B k is a rank-k matrix that approximates A in a least squares sense. The computational effort is reduced by using B k-1 as starting point in the computation of B k . The ability of B k to serve as substitute for A is measured with two objective functions: a “training” function that measures the distance between the known part of A and the corresponding part of B k , and a “probe” function that assesses the quality of the imputed entries. Watching the changes in these functions as k increases enables us to find an optimal matrix rank. Numerical experiments illustrate the usefulness of the proposed approach.  相似文献   

20.
Under study is the problem of finding a ball of minimal radius enclosing at least k points of a given finite set in a Euclidean space. In the case of a fixed dimension of the space this problem is polynomially solvable, but in general its complexity has not been previously determined. We prove that the problem is NP-hard in the strong sense and obtain a polynomial-time approximation scheme (PTAS) that enables us to solve the problem with an arbitrary relative error ? in time \(O(n^{1/\varepsilon ^2 + 1} d)\), where n is the cardinality of the original set and d is the space dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号