首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effects of selenium and light wavelengths on the growth of liquid-cultured Cordyceps militaris and the main active components’ accumulation, culture conditions as selenium selenite concentrations and light of different wavelengths were studied. The results are: adenosine accumulation proved to be significantly selenium dependent (R 2 = 0.9403) and cordycepin contents were determined to be not significantly selenium dependent (R 2 = 0.3845) but significantly enhanced by selenium except for 20 ppm; there were significant differences in cordycepin contents, adenosine contents, and mycelium growth caused by light wavelengths: cordycepin, blue light > pink light > daylight, darkness, red light; adenosine, red light > pink light, darkness, daylight, blue light; and mycelium growth, red light > pink light, darkness, daylight > blue light. In conclusion, light wavelength had a significant influence on production of mycelia, adenosine, and cordycepin, so lightening wavelength should be changed according to target products in the liquid culture of C. militaris.  相似文献   

2.
《Analytical letters》2012,45(6):1031-1042
The major compound in Cordyceps militaris (C. militaris), cordycepin, has been known to have a variety of pharmacological properties. The cordycepin concentration in artificially cultivated fruiting bodies of C. militaris was determined using quantitative 1H nuclear magnetic resonance spectroscopy (NMR). The results were compared with a high performance liquid chromatography (HPLC) method. There were no statistically significant differences in the cordycepin concentration by the two methods. Validation of each method was performed in terms of linearity, limit of detection, limit of quantification, intra- and inter-day precision, repeatability, stability, and accuracy. Better inter-day precision, repeatability, stability, and accuracy were obtained by NMR than by HPLC. These results show that NMR is an alternative to HPLC for the determination of cordycepin in C. militaris fruiting bodies.  相似文献   

3.
Cordyceps militaris produces cordycepin (3′-deoxyadenosine), which has various activities, including anti-oxidant, anti-tumoral, anti-viral, and anti-inflammatory. Ribonucleotide reductase (RNR) seems to be a candidate to produce cordycepin in C. militaris because RNR catalyzes the reduction of nucleotides to 2′-deoxynucleotides, whose structures are similar to that of cordycepin. However, the role of RNR has not been confirmed yet. In this study, complementary DNAs (cDNAs) of C. militaris RNR (CmRNR) large and small subunits (CmR1 and CmR2) were cloned from C. militaris NBRC9787 to investigate the function of CmRNR for its cordycepin production. C. militaris NBRC9787 began to produce cordycepin when grown in a liquid surface culture in medium composed of glucose and yeast extract for 15 days. CmR1 cDNA and CmR2 cDNA were obtained from its genomic DNA and from total RNA extracted from its mycelia after cultivation for 21 days, respectively. Recombinant CmR1 and CmR2 were expressed individually in Escherichia coli and purified. Purified recombinant CmR1 and CmR2 showed RNR activity toward adenosine diphosphate (ADP) only when two subunits were mixed but only show the reduction of ADP to 2′-deoxyADP. These results indicate that the pathway from ADP to 3′deoxyADP via CmRNR does not exist in C. militaris and cordycepin production in C. militaris may be mediated by other enzymes.  相似文献   

4.
The purpose of this work is to develop a high-efficiency extraction method for determining the selenium species in Cordyceps militaris. Six extraction solutions, including hot water, HCl, methanol–water, ammonium acetate, protease XIV, and protease K, combined with ultrasound-assisted extraction, were utilized in the measurements. The selenium species in the extracts were separated and characterized by high-performance liquid chromatography. Their concentrations were subsequently determined by hydride generation atomic fluorescence spectrometry. The 25?mM ammonium acetate was selected as the extraction solution due to its advantages in cost and efficiency. Validation was performed, and the selenium species recoveries were 69–97% for selenocystine, selenite, selenomethionine, and selenate with good linearity and precision. The major selenium species in C. militaris were selenocystine and selenomethionine that accounted for almost 73.1?±?1.6% of the total selenium.  相似文献   

5.
The submerged fermentation of Cordyceps militaris for cordycepin production and mycelial growth was investigated in this study. Three natural materials of brown rice paste (BRP), beerwort (B), and soybean meal juice (SMJ) were used for fermentation of C. militaris in shaking flasks. The effects of the ratio of three natural materials on dry mycelium weight (DMW) and on cordycepin yield (CY) were analyzed. D-Optional mixture design was used to optimize the ratio of these materials. Compared with the signal culture, the higher mycelial growth and cordycepin production were obtained in mixture. The analysis of Design Expert 6.0 indicated that BRP, B, and SMJ very significantly influenced (P < 0.001) DMW and CY of C. militaris, respectively. The highest DMW (18.96 g/l) and CY (2.17 mg/g) were both obtained at a ratio of 53:6:42. The experiments’ results indicated that the above mixture of these natural materials by D-optional mixture design can be used as a proper medium for the growth of mycelium and the production of cordycepin.  相似文献   

6.
A systematic study on the metabolome differences between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris was conducted using liquid chromatography−mass spectrometry. Principal component analysis and orthogonal projection on latent structure‐discriminant analysis results showed that C. militaris grown on solid rice medium (R‐CM) and C. militaris grown on tussah pupa (T‐CM) evidently separated and individually separated from wild O. sinensis, indicating metabolome difference among wild O. sinensis, R‐CM and T‐CM. The metabolome differences between R‐CM and T‐CM indicated that C. militaris could accommodate to culture medium by differential metabolic regulation. Hierarchical clustering analysis was further performed to cluster the differential metabolites and samples based on their metabolic similarity. The higher content of amino acids (pyroglutamic acid, glutamic acid, histidine, phenylalanine and arginine), unsaturated fatty acid (linolenic acid and linoleic acid), peptides, mannitol, adenosine and succinoadenosine in O. sinensis make it as an excellent choice as a traditional Chinese medicine for invigoration or nutritional supplementation. Similar compositions with O. sinensis and easy cultivation make artificially cultured C. militaris a possible alternative to O. sinensis.  相似文献   

7.
Cordycepin is the main active metabolite of Cordyceps militaris extracts; according to recent studies it has interesting therapeutic activities. A new capillary electrophoresis (CE) procedure with UV detection at 254 nm for determination of cordycepin was developed and optimized. Optimal conditions found were 20 mM sodium borate buffer with 28.6% methanol, pH 9.5, separation voltage 20 kV, hydrodynamic injection time 10 s and temperature 25 °C. Linearity was found over the 20-100 μg/mL concentration ranges of cordycepin. The developed method has been applied for determination of cordycepin in various pharmaceutical products. A comparison was made between CE and a high performance liquid chromatography (HPLC) method. Both of these methods gave comparable results. The shorter analysis time and low running cost are the main advantages of CE method.  相似文献   

8.
为了了解规模化栽培后富硒香菇的产量(生物学效率)及富硒规律,本实验通过香菇栽培基质添加模式,采取规模化生产进行富硒香菇栽培试验,选取不同浓度硒营养强化剂对香菇品种“向阳二号”和“9608”进行添加,测定相对应的香菇生物学效率以及第一潮次和第二潮次的总硒及硒代氨基酸的含量。实验发现向阳二号香菇,在硒添加量较低(0-6mg/kg)时香菇的生物转化率基本不随硒添加量的增加而改变,当硒添加量继续增加(10-60mg/kg)时,香菇的生物转化率整体低于低添加量;9608香菇,随着硒添加量的增加(0~60mg/kg),香菇的生物转化率表现出微弱的增加趋势,但差异性不显著;而两种不同品种、潮次香菇的总硒及硒代氨基酸含量均随着硒添加量的增加而提高,但硒代氨基酸占总硒的比例变化趋势却有所不同,在66.7-85.4%范围内。此外,对于不同品种的香菇,其第一潮次总硒含量在硒的添加量在0~20 mg/kg的范围内呈现良好的规律性,总硒是基质(风干)中硒含量的约4-5倍。可见,按照该规模化栽培模式进行生产栽培,可以得到总硒含量稳定、硒代氨基酸占总硒比>65%的富硒香菇产品,对富硒香菇产业的发展有一定的指导意义。  相似文献   

9.
Nine nucleosides and nucleobases, including uracil, adenine, thymine, uridine, adenosine, thymidine, cytidine, guanosine, and cordycepin in natural Cordyceps sinensis, cultured Cordyceps mycelia, and Cordyceps fruiting bodies were extracted by matrix solid‐phase dispersion (MSPD) and determined by HPLC. The experimental conditions for the MSPD extraction were optimized. Florisil was used as dispersant, petroleum ether as washing solvent, and methanol as elution solvent. The Florisil‐to‐sample ratio was selected to be 4:1 and no additional clean‐up sorbent was needed. The calibration curves had good linear relationships (r > 0.9997). The LOD and LOQ were in the range of 12 ~ 79 and 41 ~ 265 ng/mL, respectively. The intra‐ and interday precision were lower than 8.3%. The recoveries were between 61.5 and 93.2%. The present method consumed less sample compared with ultrasonic extraction and heating reflux extraction (HRE). The extraction yields obtained by using the present method are much higher than those obtained by UE and comparable to those obtained by HRE.  相似文献   

10.
Medium optimization for polysaccharide production of Cordyceps sinensis   总被引:2,自引:0,他引:2  
As a potential anticarcinogenic agent, polysaccharides from Cordyceps sinensis have been demonstrated to possess strong antioxidation activity. The aim of the present research was to study the optimal medium to produce polysaccharides of C. sinensis by using response surface methodology (RSM). The composition of optimized medium for polysaccharide production calculated from the regression model of RSM was 6.17% sucrose, 0.53% corn steep powder, 0.5% (NH4)2HPO4, and 0.15% KH2PO4 at pH 4.44, with a predicted maximum polysaccharide production of 3.17 g/L. When applying this optimal medium, the maximum polysaccharide production was 3.05 and 3.21 g/L in a shake flask and a 5-L jar fermentor, respectively. When the pH was controlled at a higher level such as pH 5.0, both cell growth and polysaccharide production were inhibited. A low pH of 2.85 was required for maximum production of polysaccharides.  相似文献   

11.
Selenium is an essential micronutrient for humans and animals, yet it is deficient in at least one billion people worldwide. Plants and plant-derived products transfer the soil-uptaken selenium to humans; therefore, the cultivation of plants enriched in selenium can be an effective way to improve the selenium status on humankind. This paper focuses on determining the ability of bread wheat to accumulate selenium after supplementation. One of the methods for supplementing this element in plants is foliar application with selenium solutions. These supplemented crop of wheat samples—bread wheat; Triticum aestivum L.—were used to determine if there is an increase of selenium content in cereal grains by comparing them with cereals cultivated in 2009 and harvested in 2010 with no supplementation. The experiments were done using sodium selenate and sodium selenite at three different selenium concentrations: 4, 20 and 100 g per hectare. Total Se is assessed by cyclic neutron activation analysis (CNAA), through short irradiations on the fast pneumatic system (SIPRA) of the Portuguese Research Reactor (RPI-ITN). The short-lived nuclide 77mSe, that features a half-lifetime of 17.5 s, was used to determine the Se content in SIPRA. The experiment was successful, since the selenium concentration increased in the cropped grains and reached values up to 35 times the non-supplemented ones.  相似文献   

12.
Abstract

The crude polysaccharide was extracted from Cordyceps militaris. Material ratio of powder and water was 1:10. The polysaccharide was successively purified by Sevag and chromatography on Sephadex G-100 column to produce a polysaccharide fraction termed CBPS-II. The average molecular weight of CBPS-II was 1.273?×?103 kDa. The study was conducted to investigate the hypoglycemic effect of Cordyceps militaris polysaccharide on diabetic mice. Analysis of the clinical chemistry of the serum samples included serum creatinine (CRE), urea nitrogen (BUN), triglyceride (TG) and total cholesterol (TC). Results revealed that a certain dose of polysaccharide can alleviate the symptoms of metabolic disorders of diabetes, contributing to the body to restore the normal levels. The metabolic profiling method was adopted to find the related biomarkers and the metabolic pathway of diabetes. Moreover, results showed that 100?mg·kg?1 of Cordyceps polysaccharides can effectively reduce the blood glucose level of diabetic mice, thus regulating the metabolism of their energy, amino acids and intestinal microbes. The biomarkers noted in their metabolism were glucose, lactic acid, 3-hydroxy butyric acid, creatine, glutamate, valine, leucine, isoleucine and very low density lipoprotein (VLDL).  相似文献   

13.
An ion-pairing reversed-phase liquid chromatography–mass spectrometry (IP-RP-LC–MS) was developed for the determination of nucleotides, nucleosides and their transformation products in Cordyceps. Perfluorinated carboxylic acid, namely pentadecafluorooctanoic acid (PDFOA, 0.25 mM), was used as volatile ion-paring agent and a reversed-phase column (Agilent ZORBAX SB-Aq column) was used for the separation of three nucleotides namely uridine-5′-monophosphate (UMP, 0.638–10.200 μg/mL), adenosine-5′-monophosphate (AMP, 0.24–7.80 μg/mL) and guanosine-5′-monophosphate (GMP, 0.42–13.50 μg/mL), seven nucleosides including adenosine (0.55–8.85 μg/mL), guanosine (0.42–6.75 μg/mL), uridine (0.33–10.50 μg/mL), inosine (0.21–6.60 μg/mL), cytidine (0.48–15.30 μg/mL), thymidine (0.20–6.30 μg/mL) and cordycepin (0.09–1.50 μg/mL), as well as six nucleobases, adenine (0.22–6.90 μg/mL), guanine (0.26–4.20 μg/mL), uracil (0.38–12.15 μg/mL), hypoxanthine (0.13–4.20 μg/mL), cytosine (0.39–12.45 μg/mL) and thymine (0.26–8.25 μg/mL) with 5-chlorocytosine arabinoside as the internal standard. The overall LODs and LOQs were between 0.01–0.16 μg/mL and 0.04–0.41 μg/mL for the 16 analytes, respectively. The contents of 16 investigated compounds in natural and cultured Cordyceps were also determined and compared after validation of the developed IP-RP-LC-MS method. The transformations of nucleotides and nucleosides in Cordyceps were evaluated based on the quantification of the investigated compounds in three extracts, including boiling water extraction (BWE), 24 h ambient temperature water immersion (ATWE) and 56 h ATWE extracts. Two transformation pathways including UMP → uridine → uracil and GMP → guanosine → guanine were proposed in both natural Cordyceps sinensis and cultured Cordyceps militaris. The pathway of AMP → adenosine → inosine → hypoxanthine was proposed in natural C. sinensis, while AMP → adenosine → adenine in cultured C. militaris. However, the transformation of nucleotides and nucleosides was not found in commercial cultured C. sinensis.  相似文献   

14.
To obtain quantitative information on human metabolism of selenium, we have performed selenium speciation analysis by HPLC/ICPMS on samples of human urine from one volunteer over a 48-hour period after ingestion of selenium (1.0 mg) as sodium selenite, L-selenomethionine, or DL-selenomethionine. The three separate experiments were performed in duplicate. Normal background urine from the volunteer contained total selenium concentrations of 8–30 μg Se/L (n=22) but, depending on the chromatographic conditions, only about 30–70% could be quantified by HPLC/ICPMS. The major species in background urine were two selenosugars, namely methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (selenosugar 1) and its deacylated analog methyl-2-amino-2-deoxy-1-seleno-β-D-galactopyranoside (selenosugar 3). Selenium was rapidly excreted after ingestion of the selenium compounds: the peak concentrations (∼250–400 μg Se/L, normalized concentrations) were recorded within 5–9 hours, and concentrations had returned to close to background levels within 48 hours, by which time 25–40% of the ingested selenium, depending on the species ingested, had been accounted for in the urine. In all experiments, the major metabolite was selenosugar 1, constituting either ∼80% of the total selenium excreted over the first 24 hours after ingestion of selenite or L-selenomethionine or ∼65% after ingestion of DL-selenomethionine. Selenite was not present at significant levels (<1 μg Se/L) in any of the samples; selenomethionine was present in only trace amounts (∼1 μg/L, equivalent to less than 0.5% of the total Se) following ingestion of L-selenomethionine, but it constituted about 20% of the excreted selenium (first 24 hours) after ingestion of DL-selenomethionine, presumably because the D form was not efficiently metabolized. Trimethylselenonium ion, a commonly reported urine metabolite, could not be detected (<1 μg/L) in the urine samples after ingestion of selenite or selenomethionine. Cytotoxicity studies on selenosugar 1 and its glucosamine isomer (selenosugar 2, methyl-2-acetamido-2-deoxy-1-seleno-β-D-glucosopyranoside) were performed with HepG2 cells derived from human hepatocarcinoma, and these showed that both compounds had low toxicity (about 1000-fold less toxic than sodium selenite). The results support earlier studies showing that selenosugar 1 is the major urinary metabolite after increased selenium intake, and they suggest that previously accepted pathways for human metabolism of selenium involving trimethylselenonium ion as the excretionary end product may need to be re-evaluated.  相似文献   

15.
Studies on epidemics have demonstrated the relationship between coronary heart disease (CHD) and mineral substances, such as selenium, calcium, magnesium, sodium, potassium, copper, zinc, iron, manganese, and vanadium, in human bodies. In this study, instrumental neutron activation analysis (INAA) and flame atomic absorption spectrophotometry (FAAS) were applied to evaluate the levels of selenium, calcium, magnesium, sodium, potassium, copper, zinc, and iron in healthy individuals and CHD patients. Hair samples were collected from 42 healthy participants and 28 diagnosed CHD patients. Calcium, magnesium, copper, and zinc levels in healthy individuals are significantly higher than the levels found in the patients (p < 0.01). Calcium/selenium ratio is also significantly higher in healthy individuals (p < 0.05). Based on the possible synergies and/or antagonisms of elements and their absorption and metabolism, magnesium/calcium, zinc/copper, and sodium/potassium ratios showed positive relevance (p < 0.01).  相似文献   

16.
不同质量浓度亚硒酸钠对豌豆芽苗菜生长及硒含量的影响   总被引:3,自引:0,他引:3  
调查了不同质量浓度亚硒酸钠喷施对豌豆芽苗菜生长的影响及植物体硒富集情况。结果 表明,对苗长2.5cm、5.0cm的豌豆芽苗菜两次喷施,处理质量浓度高于150mg/L,豌豆苗芽长、芽干质量和鲜质量、根长、根鲜质量及产量均有大幅度下降。豌豆芽苗菜中大分子结合硒和全硒含量均随外源硒的质量浓度升高而增加,但明显低于全硒的增加趋势;150mg/L处理的硒吸收利用率出现明显下降。  相似文献   

17.
An arsenic–selenium metabolite that exhibited the same arsenic and selenium X‐ray absorption near‐edge spectra as the synthetic seleno‐bis(S‐glutathionyl) arsinium ion [(GS)2AsSe]? was recently detected in rabbit bile within 25 min after intravenous injection of rabbits with sodium selenite and sodium arsenite. X‐ray absorption spectroscopy did not (and cannot) conclusively identify the sulfur‐donor in the in vivo sample. After similar treatment of rabbits, we analyzed the collected bile samples by size‐exclusion chromatography (SEC) using inductively coupled plasma atomic emission spectroscopy (ICP‐AES) to monitor arsenic, selenium and sulfur simultaneously. The bulk of arsenic and selenium eluted in a single peak, the intensity of which was greatly increased upon spiking of the bile samples with synthethic [(GS)2AsSe]?. Hence, we identify [(GS)2AsSe]? as the major metabolite in bile after exposure of rabbits to selenite and arsenite. The reported SEC–ICP‐AES method is the first chromatographic procedure to identify this biochemically important metabolite in biological fluids and is thus a true alternative to X‐ray absorption spectroscopy, which is not available to many chemists. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
In the present study, selenium-enriched plant biomass was investigated to evaluate the ability of rye seedlings to take up, and assimilate, inorganic selenium. Two different analytical approaches were used. Electrophoretic separation (SDS-PAGE) of proteins extracted from 75Se-labelled biomass was used to investigate the biotransformation of selenite into organic forms of the element. Ion-pair chromatography coupled with ICP-MS detection was chosen for the analysis of selenium species, enzymatically extracted from the plant biomass. The results of three enzymatic hydrolysis procedures and three sequential enzymatic extractions procedures are compared. The most effective single extraction was proteolysis (using protease type XIV), giving an overall extraction efficiency of 48%. However, for combinations of enzymes, the most effective was cellulase (Trichoderma viride) followed by sequential extraction of the solid pellet using protease type XIV, giving an extraction efficiency of 70%. The complementary data from the electrophoretic fractionation of proteins, and the HPLC separation of Se-species in the proteolytic digests, reveal the existence of large number of selenium-containing compounds in the rye seedling plant biomass. The results showed the complete biotransformation of inorganic selenium into organic forms during germination of the rye seedlings. HPLC-ICP-MS analysis of extracts from the plant biomass did not show the presence of selenate or selenite. At the time of this study, the lack of suitable organic-MS facilities meant that it was not possible to characterise them fully. However, the data does show that a combination of different enzymes, rather than just the commonly-used protease, should be considered when developing an extraction strategy for selenium in different food types to those already reported in the literature.  相似文献   

19.
The amount of volatile dimethylselenide (DMSe) in breath has been monitored after ingestion of sub-toxic amounts of selenium (300 μg 77Se, as selenite) by a healthy male volunteer. The breath samples were collected in Tedlar bags every hour in the first 12 h and then at longer intervals for the next 10 days. The samples were subjected to speciation analysis for volatile selenium compounds by use of cryotrapping–cryofocussing–GC–ICP–MS. Simultaneously, all urine was collected and subjected to total selenium determination by use of ICP–MS. By monitoring m/z 82 and 77, background or dietary selenium and selenium from the administered selenite were simultaneously determined in the urine and in the breath—dietary selenium only was measured by monitoring m/z 82 whereas the amount of spiked 77Se (99.1% [enriched spike]) and naturally occurring selenium (7.6% [natural abundance]) were measured by monitoring m/z 77. Quantification of DMSe was performed by using DMSe gas samples prepared in Tedlar bags (linear range 10–300 pg, R 2=0.996, detection limit of Se as DMSe was 10 pg Se, or 0.02 ng L−1, when 0.5 L gas was collected). Dimethylselenide was the only selenium species detected in breath samples before and after the ingestion of 77Se-enriched selenite. Additional DM77Se was identified as early as 15 min after ingestion of the isotopically-labelled selenite. Although the maximum concentration of 77Se in DMSe was recorded 90 min after ingestion, the natural isotope ratio for selenium in DMSe (77/82) was not reached after 20 days. The concentration of DMSe correlated with the total Se concentration in the urine during the experiment (R 2=0.80). Furthermore, the sub-toxic dose of 300 μg selenium led to a significant increase of DMSe and renal excretion of background selenium, confirming that selenium ingested as selenite is homeostatically controlled by excretion. The maximum concentration of DMSe resulting from the spiked selenite was 1.4 ng Se L−1 whereas the dietary background level was less than 0.4 ng Se L−1. Overall excretion as DMSe was calculated to be 11.2% from the ingested selenite within the first 10 days whereas urinary excretion accounts for nearly 18.5%.  相似文献   

20.
A high-pressure liquid chromatography–electrothermal atomic absorption spectroscopy (HPLCETAAS) hyphenated technique was used for the determination of seleno compounds present in a selenium-enriched yeast. Conditions were optimized for the separation and quantification of the selenoamino acids, selenocystine and selenomethionine, in the presence of other compounds. The separation was achieved by ion-pairing chromatography using sodium heptanesulphonate as the anionic counterion. On-line detection was carried out using electrothermal atomic absorption with palladium(II) as a matrix modifier. Different extraction procedures were tested on a seleniumenriched yeast. A 92% recovery of the total selenium present in the material was obtained. Attempts to evaluate selenium speciation were carried out; selenomethionine and selenocystine were identified as the major components (42% and 35% respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号