首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The submerged fermentation of Cordyceps militaris for cordycepin production and mycelial growth was investigated in this study. Three natural materials of brown rice paste (BRP), beerwort (B), and soybean meal juice (SMJ) were used for fermentation of C. militaris in shaking flasks. The effects of the ratio of three natural materials on dry mycelium weight (DMW) and on cordycepin yield (CY) were analyzed. D-Optional mixture design was used to optimize the ratio of these materials. Compared with the signal culture, the higher mycelial growth and cordycepin production were obtained in mixture. The analysis of Design Expert 6.0 indicated that BRP, B, and SMJ very significantly influenced (P < 0.001) DMW and CY of C. militaris, respectively. The highest DMW (18.96 g/l) and CY (2.17 mg/g) were both obtained at a ratio of 53:6:42. The experiments’ results indicated that the above mixture of these natural materials by D-optional mixture design can be used as a proper medium for the growth of mycelium and the production of cordycepin.  相似文献   

2.
To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.  相似文献   

3.
Laccase activity was detected in a soil bacterium Stenotrophomonas maltophilia AAP56 identified by biochemical and molecular methods. It was produced in cells at the stationary growth phase in Luria Bertani (LB) medium added by 0.4 mM copper sulfate. The addition of CuSO4 in culture medium improved production of laccase activity. However, one laccase enzyme was detected by native polyacrylamide gel electrophoresis. The enzyme showed syringaldazine (K m = 53 μM), 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (K m = 700 μM), and pyrocatechol (K m = 25 μM) oxidase activity and was activated by addition of 0.1% (v/v) Triton-X-100 in the reaction mixture. Moreover, the laccase activity was increased 2.6-fold by the addition of 10 mM copper sulfate; the enzyme was totally inhibited by ethylenediaminetetraacetic acid (5 mM), suggesting that this laccase is a metal-dependant one. Decolorization activity of some synthetic dyes (methylene blue, methyl green, toluidine blue, Congo red, methyl orange, and pink) and the industrial effluent (SITEX Black) was achieved by the bacteria S. maltophilia AAP56 in the LB growth medium under shaking conditions.  相似文献   

4.
Cordyceps militaris produces cordycepin (3′-deoxyadenosine), which has various activities, including anti-oxidant, anti-tumoral, anti-viral, and anti-inflammatory. Ribonucleotide reductase (RNR) seems to be a candidate to produce cordycepin in C. militaris because RNR catalyzes the reduction of nucleotides to 2′-deoxynucleotides, whose structures are similar to that of cordycepin. However, the role of RNR has not been confirmed yet. In this study, complementary DNAs (cDNAs) of C. militaris RNR (CmRNR) large and small subunits (CmR1 and CmR2) were cloned from C. militaris NBRC9787 to investigate the function of CmRNR for its cordycepin production. C. militaris NBRC9787 began to produce cordycepin when grown in a liquid surface culture in medium composed of glucose and yeast extract for 15 days. CmR1 cDNA and CmR2 cDNA were obtained from its genomic DNA and from total RNA extracted from its mycelia after cultivation for 21 days, respectively. Recombinant CmR1 and CmR2 were expressed individually in Escherichia coli and purified. Purified recombinant CmR1 and CmR2 showed RNR activity toward adenosine diphosphate (ADP) only when two subunits were mixed but only show the reduction of ADP to 2′-deoxyADP. These results indicate that the pathway from ADP to 3′deoxyADP via CmRNR does not exist in C. militaris and cordycepin production in C. militaris may be mediated by other enzymes.  相似文献   

5.
The pH dependence of an anionic surfactant, sodium N-dodecanoylsarcosinate (SLAS), has been studied by measuring interfacial tension, fluorescence, dynamic light scattering, etc., in aqueous solutions with phosphate and borate buffers. The interfacial tension (γ) of SLAS decreases remarkably with a pH decrease and is constant at pH > 7.3. The observed values for the critical micelle concentration (cmc) and the surfactant concentration at which its γ value is reduced by 20 mN/m from that of pure water (C 20) decrease with a pH decrease, while those also become constant at pH > 6.5 and >7.3, respectively. On the other hand, the interfacial excess of SLAS increases at pH < 7.3. These interfacial behaviors have been further investigated by the addition of Tl+ which replaces Na+ of SLAS. The observed γ values of LAS with the different counter cations are in the order of H+ < Tl+ < Na+. In order to reveal aggregation properties of SLAS, the aggregation number (N agg), the micropolarity, the hydrodynamic radius (R h) of micelle, and the fluorescence anisotropy of Rhodamine B (r) have been evaluated at various pHs. The N agg value shows a decreasing tendency with a pH increase. The I 1/I 3 ratio and the R h values do not strongly depend on pH. The r value decreases until pH 7 and remains constant at pH > 7.0. These interfacial and micelle properties have been discussed in detail considering the electrostatic interaction and the molecular structures of the hydrophilic headgroup.  相似文献   

6.
《Analytical letters》2012,45(6):1031-1042
The major compound in Cordyceps militaris (C. militaris), cordycepin, has been known to have a variety of pharmacological properties. The cordycepin concentration in artificially cultivated fruiting bodies of C. militaris was determined using quantitative 1H nuclear magnetic resonance spectroscopy (NMR). The results were compared with a high performance liquid chromatography (HPLC) method. There were no statistically significant differences in the cordycepin concentration by the two methods. Validation of each method was performed in terms of linearity, limit of detection, limit of quantification, intra- and inter-day precision, repeatability, stability, and accuracy. Better inter-day precision, repeatability, stability, and accuracy were obtained by NMR than by HPLC. These results show that NMR is an alternative to HPLC for the determination of cordycepin in C. militaris fruiting bodies.  相似文献   

7.
The medicinal fungus Ganoderma lucidum was inoculated into the media with and without supplementation of medicinal insect extracts to screen stimulators from Chinese medicinal insects for mycelial growth and triterpenoids production in submerged fermentation. The methanol and ether extracts of the tested insects had no significant stimulatory effect on the mycelial biomass production (P > 0.05), and those of H. remigator and Mylabris phalerata markedly inhibited the mycelial growth. However, the ether extract of Catharsius molossus at a concentration of 200 mg l−1 led to a significant increase in triterpenoids concentration from 231.7 ± 9.77 to 313.7 ± 10.6 mg l−1 (P < 0.01). Analysis of fermentation kinetics of G. lucidum suggests that glucose concentration in the extract of C. molossus-added group decreased more quickly as compared to the control group from day 2 to day 7 of fermentation process, while the triterpenoids biosynthesis was promoted at the same culture period. However, the culture pH profile was not affected by the addition of the extract. Chemical study of the extract show that cis-9,10-methylenehexadecanoic acid (9,10-MEA) and hexadecanoic acid (especially 9,10-MEA) were the key active compounds of the extract responsible for the stimulatory effect on the triterpenoids production.  相似文献   

8.
Photoelectrochemical measurements have been performed at a polybithienyl (PBT) film (doping level of 1 × 1018/cm3) deposited on a platinum electrode. The cathodic photocurrents and negative slope of the Mott-Schottky plot indicate that the PBT film has the features of a p-type semiconductor. The cathodic photocurrents are interpreted in terms of the Gaertner-Butler model on the basis of the theory of the semiconductor|solution interface. The (i ph hν)2/n vs. hν plots taken from the photocurrent spectra show two linearities for n=1 in the wavelength range from 460 nm to 490 nm and for n=4 in the wavelength range λ > 490 nm. The band gaps of the PBT film were determined to be 2.05 ± 0.05 eV for n=1 and 1.55 ± 0.05 eV for n=4. The flat-band potential is 0.33 V (vs SCE). From the slope of the Mott-Schottky plot at the modulation frequency of 3 kHz, the dielectric constant ɛ of the film and the thickness of the depletion layer W 0 of the PBT film were determined to be 7.4 and 0.29 μm, respectively. Received: 6 January 1999 / Accepted: 6 June 1999  相似文献   

9.
NADH is a coenzyme which plays a central role in cellular growth and metabolism. It is an intracellular fluorophore which fluoresces at 460 nm when cells are irradiated by 340 nm wavelength of light. The application of NADH+H+ fluorescence measurement for characterization of biomass and its metabolic activity during batch fermentation of 1,3-propanediol (1,3-PD) using Clostridium diolis was investigated in this study. A linear correlation between net fluorescence and biomass concentration was observed during both the initial and final phases of 1,3-PD fermentation. This could be used as an on-line indicator of biomass concentration inside the bioreactor thereby eliminating the need for sampling and off-line analysis for establishing biomass concentration during these phases. Also a sharp decline in the NADH+H+ fluorescence value was obtained towards the end of fermentation which could be a significant on-line, in situ signal of substrate depletion in the bioreactor and therefore possible fresh nutrient feed for enhanced production of 1,3-PD by repetitive and/or various fed-batch cultivation(s). This is the first report on the use of NADH + H+ fluorescence measurement technique for 1,3-PD fermentation.  相似文献   

10.
A laccase has been purified from the liquid culture growth medium containing bagasse particles of Fomes durissimus. The method involved concentration of the culture filtrate by ultrafiltration and anion exchange chromatography on diethyl aminoethyl cellulose. The sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis both gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the purified laccase determined from SDS-PAGE analysis was 75 kDa. Using 2,6-dimethoxyphenol as the substrate, the determined K m and k cat values of the laccase are 182 μM and 0.35 s−1, respectively, giving a k cat/K m value of 1.92 × 103 M−1 s−1. The pH and temperature optimum were 4.0 and 35 °C, respectively. The purified laccase has yellow colour and does not show absorption band around 610 nm found in blue laccases. Moreover, it transformed methylbenzene to benzaldehyde in the absence of mediator molecules, property exhibited by yellow laccases.  相似文献   

11.
A liquid chromatography tandem mass spectrometric method is described for the analysis of homocitrulline in human urine, a key metabolite in the differential diagnosis of hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) syndrome. Urine samples were prepared by mere five-fold dilution with a mixture of internal standards (2H2-citrulline and 2H3-creatinine) used for the simultaneous quantification of creatinine. Analytes were separated on a cyano column and eluted isocratically within seven min. Detection was achieved by monitoring transitions of 190 > 84 and 190 > 127 for homocitrulline, 178 > 115 for 2H2-citrulline, 114 > 44 for creatinine and 117 > 47 for 2H3-creatinine. Calibration curves were linear up to 100 micromol/L. Intraday (n = 7) and interday (n = 6) variations were less than 10%. In urine samples from three siblings confirmed to have HHH syndrome, homocitrulline levels were at 13.3 (74), 21.1 (50) and 108.2 (103) mmol/mol creatinine (micromol/L). Control values were 0–9 mmol/mol creatinine (n = 120). The current method solves specificity issues in homocitrulline determination often encountered with some ninhydrin-based systems (coelution with methionine) and some o-phthalaldehyde-based ones (coelution with taurine), and presents an attractive alternative with a relatively high throughput.  相似文献   

12.
A rapid and convenient assay system was developed to detect viable Escherichia coli in water. The target bacteria were recovered from solution by immunomagnetic separation and incubated in tryptic soy broth with isopropyl-β-d-thiogalactopyranoside, which induces formation of β-galactosidase in viable bacteria. Lysozyme was used to lyse E. coli cells and release the β-galactosidase. β-Galactosidase converted 4-methylumbelliferyl-β-d-galactoside to 4-methylumbelliferone (4-MU), which was measured by fluorescence spectrophotometry using excitation and emission wavelengths of 355 and 460 nm, respectively. Calibration graphs of 4-MU fluorescence intensity versus E. coli concentration showed a detection range between 8 × 104 and 1.6 × 107 cfu mL−1, with a total analysis time of less than 3 h. The advantage of this method is that it detects viable cells because it is based on the activity of the enzyme intrinsic to live E. coli.  相似文献   

13.
The effects of light on arsenic accumulation of Thraustochytrium CHN‐1 were investigated. Thraustochytrium CHN‐1, when exposed to blue light from light‐emitting diodes (LEDs), accumulated arsenate added to its growth medium to a much greater extent than Thraustochytrium cells exposed to fluorescent or red light, or when cultured in the dark. Arsenic compounds in Thraustochytrium CHN‐1 were analyzed by high‐performance liquid chromatography, with an inductively coupled plasma mass spectrometer serving as an arsenic‐specific detector. Arsenate, arsenite, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA) and arsenosugar were identified. The order of arsenic species in Thraustochytrium CHN‐1 was arsenic(V)> arsenic(III)> MMAA > DMAA at an arsenic concentration of 10 mg dm?3 in the medium in blue LED light. As it is known that blue light induces the synthesis of certain metabolites in plants and microorganisms, this indicates that the accumulation of arsenic is an active metabolic process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We have developed a circular-dichroism thermal lens microscope for UV wavelengths (UV-CD-TLM), for the first time, to realize sensitive chiral analysis on a microchip. Quasi-continuous-wave phase modulation of a pulsed UV laser was used to generate left-circularly polarized light and right-circularly polarized light and to detect the generated TL signal amplitude and phase with a lock-in amplifier. The amplitude and phase were used to determine the concentration and chirality, respectively, of a sample. The basic principle of UV-CD-TLM for chiral analysis on a microchip was verified by measuring aqueous solutions of optically active camphorsulfonic acids (CSA). Lower limits of detection (LOD) were calculated at S/= 2 and were 8.7 × 10−4 mol L−1A = 5.2 × 10−6 Abs.) for (+)-CSA and 8.4 × 10−4 mol L−1A = 5.0 × 10−6 Abs.) for (−)-CSA. In terms of number of molecules, LODs for UV-CD-TLM were calculated to be 8.7 fmol and 8.4 fmol, respectively. This is at least three orders of magnitude lower than previously obtained. The applicability of UV-CD-TLM for chiral analysis on a microchip was verified. Figure Sensitive chiral analysis by thermal lens microscope (TLM)  相似文献   

15.
The interdiffusion in a low-strained Si0.93Ge0.07/Si epilayer was analyzed by double-crystal X-ray diffraction. The interdiffusion was characterized by a low diffusion barrier of 1.81 eV with a diffusion constant of 4.3 × 10−5 cm2/sec, which indicates correlation with the stacking fault generated by the homoepitaxial growth of the Si layer prior to the growth of the strained SiGe layer. At the very low-strained layer, the driving force causing the interdiffusion is the concentration gradient, and the mechanism is self-diffusion of Si. Furthermore, the interdiffusion mechanisms were classified into three groups, depending on the Ge mole fraction x. For x < 0.2, the diffusion process in the SiGe alloy is similar to a self-diffusion of Si atoms, while, for 0.2 < x < 0.4, Ge atoms prefer to be diffused out from the alloy. Finally, for x > 0.4, Si atoms can be diffused into the alloy. Received: 22 April 1997 / Accepted: 4 June 1997  相似文献   

16.
Summary.  Single crystals of MgAl2F8(H2O)2 have been obtained under hydrothermal conditions (250°C, 14 d) from a starting mixture of AlF3 and MgAlF5(H2O)2 in a 5% (w/w) HF solution. The crystal structure has been determined and refined from single crystal data (Fmmm (#69), Z = 4, a = 7.2691(7), b = 7.0954(16), c = 12.452(2) ?, 281 structure factors, 27 parameters, R(F 2 > 2σ (F 2)) = 0.0282, wR(F 2 all) = 0.0885). The obtained crystals were systematically twinned according to (010/100/001) as twinning matrix, reflecting the pseudo-tetragonal metric. The crystal structure is composed of perowskite-type layers built of corner sharing AlF6 octahedra with an overall composition of AlF4 which are connected via common fluorine atoms of [MgF4/2(H2O)2/1] octahedra. Group-subgroup relations of MgAl2F8(H2O)2 to WO3(H2O)0.33 and to other M(II)M(III)2 F8(H2O)2 structures are briefly discussed. Above 570°C, MgAl2F8(H2O)2 decomposes under elimination of water into α-AlF3, β-AlF3, and MgF2. Received October 29, 2001. Accepted (revised) December 6, 2001  相似文献   

17.
Summary.  Hydrazinium(+2) fluoroarsenate(III) fluoride was prepared by the reaction of hydrazinium(+2) fluoride and liquid arsenic trifluoride. N2H6AsF4F is stable at 273 K, but decomposes slowly at room temperature. N2H6AsF4F crystallizes in the orthorhombic space group Pnn2 with a = 774.0(2) pm, b = 1629.2(4) pm and c = 436.6(1) pm; V = 0.5506(3) nm3, Z = 4 and d c  = 2.461 g cm−3. The structure consists of N2H6 2+ cations, AsF4 anions, and F anions and is interconnected by a hydrogen bonding network. Distorted trigonal-bipyramidal AsF4 units are very weakly interconnected and form chains along the b axis. Bands in the Raman spectrum are assigned to the vibrations of N2H6 +2 cations and AsF4 anions. Corresponding author. E-mail: adolf.jesih@ijs.si Received April 18, 2002; accepted July 15, 2002  相似文献   

18.
Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, K m for the laboratory-prepared 10:4-phosphomolybdate is 2.56 ± 0.25 mM (arbitrary concentration), whereas the apparent V max is 99.4 ± 2.85 nmol Mo-blue min−1 mg−1 protein. The apparent Michaelis constant or K m for NADH as the electron donor is 1.38 ± 0.09 mM, whereas the apparent V max is 102.6 ± 1.73 nmol Mo-blue min−1 mg−1 protein. The apparent K m and V max for another electron donor, NADPH, is 1.43 ± 0.10 mM and 57.16 ± 1.01 nmol Mo-blue min−1 mg−1 protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V max obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.  相似文献   

19.
Yellow N,N′-carbonyl-bridged dipyrrinones can generally be prepared from dipyrrinones simply by reaction with N,N′-carbonyldiimidazole in the presence of a strong, non-nucleophilic base. They are typically intensely fluorescent, with fluorescent quantum yields approaching 1.0. In an effort to shift the excitation wavelength, and thus the fluorescence emissions, strongly to the red, we prepared bridged dipyrrinones conjugated with thiobarbituric acid and Meldrum’s acid substituents at C-9. Such conjugation causes the dipyrrinones to have a magenta color (absorption wavelength shifted from ∼400 nm of a typical dipyrrinone to ∼550 nm of the dipyrrinone conjugate). For comparison, we also prepared analogs with formyl, carboxyl, acrylate, and acetyl substituents at C-9. Unexpectedly and uniquely, the 9-CHO substituent caused the fluorescence quantum yield to drop to ∼10−3 while carboethoxy substituent exerted only a minor influence.  相似文献   

20.
There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y p/x), biosurfactant on sucrose (Y p/s), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g−1, 0.18 g g−1, and 0.03 g l−1 h−1, respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y x/s, Y p/x, Y p/s, and Y of 0.42 g g−1, 0.595 g g−1, 0.25 g g−1, and 0.057 g l−1 h−1, respectively. The biosurfactant maximum production, 2.5 g l−1, was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K L a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s−1, respectively. Comparison of K L a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K L a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号