首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal photocatalysts can utilize solar light for the conversion of CO2 to carbon-based fuels, but controlling the product selectivity for CO2 reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO2 reduction even in the absence of transition metal co-catalysts. Besides H2, imidazolium-modified ZnSe QDs evolve up to 2.4 mmolCO gZnSe−1 (TONQD > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using 1H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO2 intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO2 reduction.

A photocatalyst system consisting of ZnSe quantum dots modified with a thiolated imidazolium capping ligand for visible light-driven reduction of aqueous CO2 to CO is reported without the need for a metal complex co-catalyst.  相似文献   

2.
A photocatalyst TiO2/Ti-BPDC-Pt is developed with a self-grown TiO2/Ti-metal–organic framework (MOF) heterojunction, i.e., TiO2/Ti-BPDC, and selectively anchored high-density Pt single-atomic cocatalysts on Ti-BPDC for photocatalytic hydrogen evolution. This intimate heterojunction, growing from the surface pyrolytic reconstruction of Ti-BPDC, works in a direct Z-scheme, efficiently separating electrons and holes. Pt is selectively anchored on Ti-BPDC by ligands and is found in the form of single atoms with loading up to 1.8 wt %. The selective location of Pt is the electron-enriched domain of the heterojunction, which further enhances the utilization of the separated electrons. This tailored TiO2/Ti-BPDC-Pt shows a significantly enhanced activity of 12.4 mmol g−1 h−1 compared to other TiO2- or MOF-based catalysts. The structure-activity relationship further proves the balance of two simultaneously exposed domains of heterojunctions is critical to fulfilling this kind of catalyst.  相似文献   

3.
The development of high-performance photocatalytic systems for CO2 reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite Cs2AgBiBr6 nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 μmol g−1 h−1 for visible-light-driven CO2-to-CO conversion coupled with water oxidation to O2, over 8 times of the unmodified Cs2AgBiBr6 (36±8 μmol g−1 h−1), also far surpassing the documented systems (<150 μmol g−1 h−1). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of Cs2AgBiBr6 can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.  相似文献   

4.
As the main component of syngas, reducing CO2 to CO with high selectivity through photocatalysis could provide a sustainable way to alleviate energy shortage issues. Developing a photocatalytic system with low cost and high performance that is environmentally friendly is the ultimate goal towards CO2 photoreduction. Herein, an efficient and economic three-component heterojunction photocatalyst is designed and fabricated for converting CO2 to CO in the absence of organic sacrificial agents. The heterojunction is made of Cu2−xS nanotubes coated with a carbon layer (C-Cu2−xS) and g-C3N4. By using the classical MOF material HKUST-1 as a precursor, hollow tubular-like metal sulfides (C-Cu2−xS) with carbon coating were synthesized and further loaded on g-C3N4, forming a three-component heterojunction C-Cu2−xS@g-C3N4. The carbon coat in C-Cu2−xS@g-C3N4 acts as an electron reservoir, which facilitates electron–hole pair separation. The optimized C-Cu2−xS@g-C3N4 acted as a photocatalyst in CO2 reduction with a high reactivity of 1062.6 μmol g−1 and selectivity of 97 %. Compared with bare g-C3N4 (158.4 μmol g−1) and C-Cu2−xS, the reactivity is nearly 7 and 23-fold enhanced and this CO generation rate is higher than most of the reported Cu2S or g-C3N4 composites under similar conditions. The prominent activity may result from enhanced light adsorption and effective charge separation. This work might open up an alternative method for the design and fabrication of high-performance and low-cost photocatalysts for efficiently and durably converting CO2 to CO with high selectivity.  相似文献   

5.
采用水热法制备了TiO2和CdSe两种纳米棒材料, 将两种纳米材料制备成TiO2/CdSe复合纳米棒膜电极, 并在复合膜上电化学聚合生成聚3-甲基噻吩poly(3-methylthiophene) (PMeT), 研究了其光电化学性能. 实验表明, 当TiO2与CdSe的物质的量复合比为2∶1, PMeT的聚合时间为40 s, 在电极电势为-0.2 V下ITO/TiO2/CdSe/PMeT电极光电转换效率(IPCE)达到56%, 对比ITO/TiO2/CdSe复合膜电极在长波方向的光电转换效率明显提高, 光吸收截止波长发生了明显的红移. 同时以ITO/TiO2/CdSe/PMeT组装了简易的杂化太阳电池, 初步研究了光电池性能, 光电池总效率为0.08%, Voc=0.4 V, jsc=0.61 mA/cm2, ff=0.33.  相似文献   

6.
《中国化学快报》2022,33(8):3709-3712
Semiconductor-employed photocatalytic CO2 reduction has been regarded as a promising approach for environmental-friendly conversion of CO2 into solar fuels. Herein, TiO2/Cu2O composite nanorods have been successfully fabricated by a facile chemical reduction method and applied for photocatalytic CO2 reduction. The composition and structure characterization indicates that the Cu2O nanoparticles are coupled with TiO2 nanorods with an intimate contact. Under light illumination, all the TiO2/Cu2O composite nanorods enhance the photocatalytic CO2 reduction. In particular, the TiO2/Cu2O-15% sample exhibits the highest CH4 yield (1.35 µmol g-1 h-1) within 4 h irradiation, and it is 3.07 and 15 times higher than that of pristine TiO2 nanorods and Cu2O nanoparticles, respectively. The enhanced photoreduction capability of the TiO2/Cu2O-15% is attributed to the intimate construction of Cu2O nanoparticles on TiO2 nanorods with formed p-n junction to accelerate the separation of photogenerated electron-hole pairs. This work provides a reference for rational design of a p-n heterojunction photocatalyst for CO2 photoreduction.  相似文献   

7.
A green and simple method was found to prepare CdS/CdSe co-sensitized photoelectrodes for the quantum dots sensitized solar cells application. All the assembly processes of CdS and CdSe quantum dots (QDs) were carried out in aqueous solution. CdS and CdSe QDs were sequentially assembled onto TiO2-nano-SiO2 hybrid film by two steps. Firstly, CdS QDs were deposited in situ over TiO2-nano-SiO2 hybrid film by the successive ionic layer adsorption and reaction (SILAR) process in water. Secondly, using 3-mercaptopropionic acid (3-MPA) as a linker molecule, the pre-prepared colloidal CdSe QDs (~3.0 nm) dissolved in water was linked onto the TiO2-nano-SiO2 hybrid film by the self-assembled monolayer technique with the mode of dropwise. The mode is simple and advantageous to saving materials and time. The results show that the photovoltaic performance of the cells is enhanced with the increase of SILAR cycles for TiO2-nano-SiO2/CdS photoelectrode. The power conversion efficiency of 2.15 % was achieved using the co-sensitization photoelectrode prepared by using 6 SILAR cycles of CdS plus CdSe (TiO2-nano-SiO2/CdS(6)/CdSe) under the illumination of one sun (AM1.5, 100 mW/cm2).  相似文献   

8.
Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy. In detail, H2 production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents. In this work, Cd S quantum dots(Cd S QDs) were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222) by the electrostatic selfassembly at room temperature. The consequent Pd-PCN-222/CdS heterojunction composites...  相似文献   

9.
In this study, copper/zinc oxide/graphite nitrogen carbide (Cu/ZnO/g-C3N4) is prepared using a hydrothermal method and applied as a photocatalyst for CO2 photoreduction. The morphology and structural properties of the obtained Cu/ZnO/g-C3N4 are systematically characterized through X-ray powder diffraction, ultraviolet–visible absorption spectroscopy, transmission electronic microscopy, and photoluminescence spectroscopy. A 3 wt% Cu/ZnO/g-C3N4 photocatalyst exhibits high CH4 (40.7 μmol g−1 hr−1), CO (65.1 μmol g−1 hr−1), and CH3OH (92.5 μmol g−1 hr−1) production rates, which are 38.3, 77.1, and 58.1 fold higher than the pure g-C3N4. The production rate is higher than those for bulk g-C3N4 and ZnO/g-C3N4. Finally, the reaction mechanism of Cu/ZnO/C3N4 is proposed in this study.  相似文献   

10.
In this work, environmentally friendly photocatalysts with attractive catalytic properties are reported that have been prepared by introducing SnO2 quantum dots (QDs) directly onto ZnSe(N2H4)0.5 substrates to induce advantageous charge separation. The SnO2/ZnSe(N2H4)0.5 nanocomposites could be easily synthesized through a one-pot hydrothermal process. Owing to the absence of capping ligands, the attached SnO2 QDs displayed superior photocatalytic properties, generating many exposed reactive surfaces. Moreover, the addition of a specified amount of SnO2 boosted the visible-light photocatalytic activity; however, the presence of excess SnO2 QDs in the substrate resulted in aggregation and deteriorated the performance. The spectroscopic data revealed that the SnO2 QDs act as a photocatalytic mediator and enhance the charge separation within the type II band alignment system of the SnO2/ZnSe(N2H4)0.5 heterojunction photocatalysts. The separated charges in the heterojunction nanocomposites promote radical generation and react with pollutants, resulting in enhanced photocatalytic performance.  相似文献   

11.
Artificial photosynthesis is a promising strategy for converting carbon dioxide (CO2) and water (H2O) into fuels and value-added chemical products. However, photocatalysts usually suffered from low activity and product selectivity due to the sluggish dynamic transfer of photoexcited charge carriers. Herein, we describe anchoring of Ag single atoms on hollow porous polygonal C3N4 nanotubes (PCN) to form the photocatalyst Ag1@PCN with Ag−N3 coordination for CO2 photoreduction using H2O as the reductant. The as-synthesized Ag1@PCN exhibits a high CO production rate of 0.32 μmol h−1 (mass of catalyst: 2 mg), a high selectivity (>94 %), and an excellent stability in the long term. Experiments and density functional theory (DFT) reveal that the strong metal–support interactions (Ag−N3) favor *CO2 adsorption, *COOH generation and desorption, and accelerate dynamic transfer of photoexcited charge carriers between C3N4 and Ag single atoms, thereby accounting for the enhanced CO2 photoreduction activity with a high CO selectivity. This work provides a deep insight into the important role of strong metal–support interactions in enhancing the photoactivity and CO selectivity of CO2 photoreduction.  相似文献   

12.
In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).  相似文献   

13.
By supporting platinum (Pt) and cadmium sulfide (CdS) nanoparticles on indium oxide (In2O3), we fabricated a CdS/Pt/In2O3 photocatalyst. Selective photoreduction of carbon dioxide (CO2) to methane (CH4) was achieved on CdS/Pt/In2O3 with electronic Pt−In2O3 interactions, with CH4 selectivity reaching to 100 %, which is higher than that on CdS/Pt/In2O3 without electronic Pt−In2O3 interactions (71.7 %). Moreover, the enhancement effect of electronic Pt-(metal-oxide) interactions on selective photoreduction of CO2 to CH4 also occurs by using other common metal oxides, such as photocatalyst supports, including titanium oxide, gallium oxide, zinc oxide, and tungsten oxide. The electronic Pt-(metal-oxide) interactions separate photogenerated electron-hole pairs and convert CO2 into CO2δ−, which can be easily hydrogenated into CH4 via a CO2δ−→HCOO*→HCO*→CH*→CH4 path, thus boosting selective photoreduction of CO2 to CH4. This offers a new way to achieve selective photoreduction of CO2.  相似文献   

14.
《Electroanalysis》2018,30(5):877-885
This work describes for the first time the employment of water soluble GSH‐ZnSe QDs stabilized by XG and MWCNT for electrode modification in the detection of Cd ions in a highly sensitive and selective manner resulting from the unique structure and surface chemistry of the used QDs. The surface of a glassy carbon (GC) electrode was modified through casting a thin layer of multiwalled carbon nanotubes (MWCNT) followed by a complex layer of ZnSe quantum dots (QDs) stabilized by xanthan gum (XG). Due to the electrocatalytic properties of MWCNT and electroanalytical performance of ZnSe‐XG complex, the new modified electrode significantly improves the sensitivity and selectivity of Cd(II) detection and exhibits enhanced performance in comparison to bare GC, ZnSe/GC and ZnSe/MWCNT/GC electrodes. Strong interactions between ZnSe QDs and XG resulting from hydrogen bonding and complexing association led to stabilization of ZnSe QDs and higher affinity towards Cd(II) ions adsorption compared to a ZnSe QDs film alone. The modified electrode showed linear response in a wide concentration range from 100 nM to 5 μM (R2=0.9967) along with a high sensitivity of 156.6 nA ⋅ mol−1 ⋅ L−1 and a low detection limit of 20 nM. The electrode shows high selectivity to Cd with negligible interference from other metal ions and salts.  相似文献   

15.
Photoconversion of CO2 and H2O into ethanol is an ideal strategy to achieve carbon neutrality. However, the production of ethanol with high activity and selectivity is challenging owing to the less efficient reduction half-reaction involving multi-step proton-coupled electron transfer (PCET), a slow C−C coupling process, and sluggish water oxidation half-reaction. Herein, a two-dimensional/two-dimensional (2D/2D) S-scheme heterojunction consisting of black phosphorus and Bi2WO6 (BP/BWO) was constructed for photocatalytic CO2 reduction coupling with benzylamine (BA) oxidation. The as-prepared BP/BWO catalyst exhibits a superior photocatalytic performance toward CO2 reduction, with a yield of 61.3 μmol g−1 h−1 for ethanol (selectivity of 91 %).In situ spectroscopic studies and theoretical calculations reveal that S-scheme heterojunction can effectively promote photogenerated carrier separation via the Bi−O−P bridge to accelerate the PCET process. Meanwhile, electron-rich BP acts as the active site and plays a vital role in the process of C−C coupling. In addition, the substitution of BA oxidation for H2O oxidation can further enhance the photocatalytic performance of CO2 reduction to C2H5OH. This work opens a new horizon for exploring novel heterogeneous photocatalysts in CO2 photoconversion to C2H5OH based on cooperative photoredox systems.  相似文献   

16.
We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time-resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine-captured CO2, namely carbamates, for direct photochemical conversion without additional energy input.  相似文献   

17.
Herein, we first design a model of reversible redox-switching metal–organic framework single-unit-cell sheets, where the abundant metal single sites benefit for highly selective CO2 reduction, while the reversible redox-switching metal sites can effectively activate CO2 molecules. Taking the synthetic Cu-MOF single-unit-cell sheets as an example, synchrotron-radiation quasi in situ X-ray photoelectron spectra unravel the reversible switching CuII/CuI single sites initially accept photoexcited electrons and then donate them to CO2 molecules, which favors the rate-liming activation into CO2δ−, verified by in situ FTIR spectra and Gibbs free energy calculations. As an outcome, Cu-MOF single-unit-cell sheets achieve near 100 % selectivity for CO2 photoreduction to CO with a high rate of 860 μmol g−1 h−1 without any sacrifice reagent or photosensitizer, where both the activity and selectivity outperform previously reported photocatalysts evaluated under similar conditions.  相似文献   

18.
The integration of molecular catalysts with low‐cost, solid light absorbers presents a promising strategy to construct catalysts for the generation of solar fuels. Here, we report a photocatalyst for CO2 reduction that consists of a polymeric cobalt phthalocyanine catalyst (CoPPc) coupled with mesoporous carbon nitride (mpg‐CNx) as the photosensitizer. This precious‐metal‐free hybrid catalyst selectively converts CO2 to CO in organic solvents under UV/Vis light (AM 1.5G, 100 mW cm?2, λ>300 nm) with a cobalt‐based turnover number of 90 for CO after 60 h. Notably, the photocatalyst retains 60 % CO evolution activity under visible light irradiation (λ>400 nm) and displays moderate water tolerance. The in situ polymerization of the phthalocyanine allows control of catalyst loading and is key for achieving photocatalytic CO2 conversion.  相似文献   

19.
In this paper, we present the study of preparation and ionic conductance for an intercalated hybrid of kaolinite with potassium dihydrogen. The intercalation efficiency is high up to ca. 90%. The intercalated hybrid has been characterized by powder X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. The ionic conductivity (σ) of the hybrid material is strongly dependent on the moisture in the environment, with σ = 8.4 × 10−10 S cm−1 at 293 K and gradually increases to 7.16 × 10−9 S cm−1 under N2 atmosphere (anhydrous environment) at 353 K as well as an activation energy of Ea = 0.618 e V, whereas σ = 2.19 × 10−4 S cm−1 at 100% relative humidity and 293 K with Ea = 0.44 eV. The mechanism that the moisture affects the ionic conductance of the intercalated hybrid is further discussed.  相似文献   

20.
Utilizing sustainable energy for chemical activation of small molecules, such as CO2, to produce important chemical feedstocks is highly desirable. The simultaneous production of CO/H2 mixture (syngas) from photoreduction of CO2 and H2O is highly promising. However, the relationships between structure, composition, crystallinity, and photocatalytic performance are still indistinct. Here, amorphous ultrathin CoO nanowires and polyoxometalate incorporated nanowires with even lower crystallinity were synthesized. The POM-incorporated ultrathin nanowires exhibit high photocatalytic syngas production activity, reaching H2 and CO evolution rates of 11555 and 4165 μmol g−1 h−1 respectively. Further experiments indicate that the ultrathin morphology and incorporation of POM both contribute to the superior performance. Multiple characterizations reveal the enhanced charge–hole separation efficiency of the catalyst would facilitate the photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号