首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synchrotron radiation photoelectron spectroscopy (SRPES) has been used to study the electronic structure of the Au/GaN(0 0 0 1) system at the initial growth stage. The peak fitting of Au4f7/2 core-level and the energy shift of valence band indicate that Au–Ga alloy were formed in the interface reaction. According to the Ga3d signal intensity attenuation vs. the gold film thickness, the early growth mode is considered to be 3D mode above the reaction layer. By using the Linear Augmented Plane Wave method the density of states (DOS) for GaN and Au bulk are calculated within the framework of local functional theory. The theoretical results agree with the valence band structure quite well. The mechanism of interface reaction is discussed based on the experimental and theoretical results.  相似文献   

2.
We study the adsorption and desorption kinetics of Ga on using in situ reflection high-energy electron diffraction. Two stable surface phases are identified, which manifest themselves at low temperature by a (1×2) reconstruction at bilayer coverage and a (4×4) reconstruction at trilayer coverage. At growth temperature, Ga adsorbs layer-by-layer up to bilayer coverage after which Ga cluster and eventually droplet formation occurs. The bilayer desorption is delayed by “feeding” from this excess Ga. The optimum growth conditions with regard to surface morphology are those giving rise to trilayer coverage. This finding is in contrast to the case of GaN(0 0 0 1) where the optimum growth conditions are related to the formation of a Ga bilayer at the growth front.  相似文献   

3.
Ab initio density functional theory, using the B3LYP hybrid functional with all-electron basis sets, has been applied to the adsorption of H on the (0 0 0 1) surface of wurtzite GaN. For bulk GaN, good agreement is obtained with photoemission and X-ray emission data for the valence band and for the Ga 3d and N 2s shallow core levels. A band gap of Eg = 4.14 eV is computed vs the experimental value (at 0 K) of 3.50 eV. A simple model, consisting of a (2 × 2) structure with 3/4-monolayer (ML) of adsorbed H, is found to yield a density of states in poor agreement with photoemission data for H adsorbed on surfaces prepared by ion bombardment and annealing. A new model, consisting of co-adsorbed Ga (1/4 ML) and H (1/2 ML), is proposed to account for these data.  相似文献   

4.
The growth of epitaxial GaN films on (0 0 0 1)-sapphire has been investigated using X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). In order to investigate the mechanism of the growth in detail, we have focused on the nitridation of pre-deposited Ga layers (droplets) using ion beam-assisted molecular beam epitaxy (IBA-MBE). Comparative analysis of XPS core-level spectra and LEED patterns reveals, that nitride films nucleate as epitaxial GaN islands. The wetting of the surface by GaN proceeds via reactive spreading of metallic Ga, supplied from the droplets. The discussed growth model confirms, that excess of metallic Ga is beneficial for GaN nucleation.  相似文献   

5.
The nitridation of GaAs(1 0 0) surfaces has been studied using XPS spectroscopy, one of the best surface sensitive techniques. A glow discharge cell was used to produce a continuous plasma with a majority of N atomic species. We used the Ga3d and As3d core levels to monitor the chemical state of the surface and the coverage of the species. A theoretical model based on stacked layers allows to determine the optimal temperature of nitridation. Moreover, this model permits the determination of the thickness of the GaN layer. Varying time of nitridation from 10 min to 1 h, it is possible to obtain GaN layers with a thickness between 0.5 nm and 3 nm.  相似文献   

6.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   

7.
Samarium (Sm) ions of 200 keV in energy were implanted into highly-resistive molecular-beam-epitaxy grown GaN thin films with a focused-ion-beam implanter at room temperature. The implantation doses range between 1014 and 1016 cm−2. X-ray diffraction revealed Sm incorporation into GaN matrix without secondary phase. Raman-scattering spectroscopy identified impurity-independent defect-related oscillation modes. Slight decrease in band gap and significant reduction in transmittance were observed by optical transmission spectroscopy. Photoluminescence spectra showed emission peaks related to background p-type impurity. Ferromagnetic hysteresis loops were recorded from GaN implanted with highest Sm dose, and magnetic ordering was observed from Sm-implanted GaN with dose of and above 1015 cm−2. The long-range magnetic ordering can be attributed to interaction of Sm ions through the implantation-induced Ga vacancy.  相似文献   

8.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

9.
Surface phase diagrams of GaN(0 0 0 1)-(2 × 2) and pseudo-(1 × 1) surfaces are systematically investigated by using our ab initio-based approach. The phase diagrams are obtained as functions of temperature T and Ga beam equivalent pressure pGa by comparing chemical potentials of Ga atom in the vapor phase with that on the surface. The calculated results imply that the (2 × 2) surface is stable in the temperature range of 700-1000 K at 10−8 Torr and 900-1400 K at 10−2 Torr. This is consistent with experimental stable temperature range for the (2 × 2). On the other hand, the pseudo-(1 × 1) phase is stable in the temperature range less than 700 K at 10−8 Torr and less than 1000 K at 10−2 Torr. Furthermore, the stable region of the pseudo-(1 × 1) phase almost coincides with that of the (2 × 2) with excess Ga adatom. This suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1 × 1) to the (2 × 2) with Ga adatom and vice versa.  相似文献   

10.
Ti/GaN interface formation on GaN(0 0 0 1)-(1 × 1) surface has been investigated by means of resonant photoelectron spectroscopy (for photon energies near to Ti 3p → 3d excitation). The sets of photoelectron energy distribution curves were recorded for in situ prepared clean GaN surface and as a function of Ti coverage followed by post-deposition annealing. Manifestations of chemical reactions at the Ti/GaN interface were revealed in the valence band spectra as well as in the Ga 3d core level peak—the discerned contribution of Ti 3d states to the valence band turned out to be similar to that reported in the literature for titanium nitride. The interaction between Ti and N was further enhanced by post-deposition annealing. The study was complemented with SIMS and AFM measurements.  相似文献   

11.
Diffusion length of Ga on the GaAs(0 0 1)-(2×4)β2 is investigated by a newly developed Monte Carlo-based computational method. The new computational method incorporates chemical potential of Ga in the vapor phase and Ga migration potential on the reconstructed surface obtained by ab initio calculations; therefore we can investigate the adsorption, diffusion and desorption kinetics of adsorbate atoms on the surface. The calculated results imply that Ga diffusion length before desorption decreases exponentially with temperature because Ga surface lifetime decreases exponentially. Furthermore, Ga diffusion length L along and [1 1 0] on the GaAs(0 0 1)-(2×4)β2 are estimated to be and L[110]200 nm, respectively, at the incorporation–desorption transition temperature (T860 K).  相似文献   

12.
Colorless transparent hexagonal GaN platelet crystals with a size of 1–4 mm have been grown under more moderate conditions (800 °C, 12 atm) using Li3N and Ga. Growth mechanism of this method was revealed by a series of experiment results. The morphologies of GaN single crystals were observed with an optical microscope and a scanning electron microscope. The crystal was characterized by X-ray powder diffraction and Raman scattering spectrum. PACS 81.05.Ea; 81.10.Dn  相似文献   

13.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

14.
First-principles pseudo-potential calculations within density-functional theory framework are performed in order to study the structural and electronic properties of nickel adsorption and diffusion on a GaN(0 0 0 1)-2×2 surface. The adsorption energies and potential energy surfaces are investigated for a Ni adatom on the Ga-terminated (0 0 0 1) surface of GaN. This surface is also used to study the effect of the nickel surface coverage. The results show that the most stable positions of a Ni adatom on GaN(0 0 0 1) are at the H3 sites and T4 sites, for low and high Ni coverage respectively. In addition, confirming previous experimental results, we have found that the growth of Ni monolayers on the GaN(0 0 0 1) surface is possible.  相似文献   

15.
CdTe thin films were grown on GaAs (1 0 0) substrates by using molecular beam epitaxy at various temperatures. The bright-field transmission electron microscopy (TEM) images and the high-resolution TEM (HRTEM) images showed that the crystallinity of CdTe epilayers grown on GaAs substrates was improved by increasing the substrate temperature. The result of selected-area electron diffraction pattern (SADP) showed that the orientation of the grown CdTe thin films was the (1 0 0) orientation. The lattice constant the strain, and the stress of the CdTe thin film grown on the GaAs substrate were determined from the SADP result. Based on the SADP and HRTEM results, a possible atomic arrangement for the CdTe/GaAs heterostructure is presented.  相似文献   

16.
We have demonstrated GaN/AlN quantum dots (QD) photodetectors, relying on intraband absorption and in-plane carrier transport in the wetting layer. The devices operate at room temperature in the wavelength range 1.3–1.5 μm. Samples with 20 periods of Si-doped GaN QD layers, separated by 3 nm-thick AlN barriers, have been grown by plasma-assisted molecular-beam epitaxy on an AlN buffer on a c-sapphire substrate. Self-organized dots are formed by the deposition of 5 monolayers of GaN under nitrogen-rich conditions. The dot height is 1.2±0.6 to 1.3±0.6 nm and the dot density is in the range 1011–1012 cm−2. Two ohmic contacts were deposited on the sample surface and annealed in order to contact the buried QD layers. The dots exhibit TM polarized absorption linked to the s–pz transition. The photocurrent at 300 K is slightly blue-shifted with respect to the s–pz intraband absorption. The responsivity increases exponentially with temperature and reaches a record value of 10 mA/W at 300 K for detectors with interdigitated contacts.  相似文献   

17.
Results for deposition and thermal annealing of gallium on the Si(1 0 0)-(2 × 1) surface achieved by synchrotron radiation photoelectron spectroscopy (SR-PES) and low energy electron diffraction (LEED) are presented. In addition to deposition of Ga on a clean surface, the influence of water adsorption on the arrangement of gallium atoms was also studied. The results on Ga deposition at a higher temperature (490 °C) are consistent with a Ga ad-dimer model showing equivalent bond arrangement of all Ga atoms for coverages up to 0.5 ML. The deposition onto a surface with adsorbed water at room temperature led to a disordered gallium growth. In this case gallium atoms bind to silicon dimers already binding fragments of adsorbed water. A subsequent annealing of these layers leads to a surface structure similar to the Ga-(2 × 2), however, it is less ordered, probably due to the presence of silicon oxides formed from water fragments.  相似文献   

18.
The adsorption, diffusion, and dissociation of precursor species, MMGa (monomethylgallium) and NH3, on the GaN (0 0 0 1) surface have been investigated using the DFT (density functional theory) calculation combined with a GaN (0 0 0 1) surface cluster model. The energetics of NH3(ad) dissociation on the surface proposed of NH3(ad) via NH2(ad) to NH(ad) was facile with small activation barriers. A combined analysis with surface diffusion of adatoms demonstrated Ga(ad) and NH(ad) become primary reactant species for 2D film growth, and N(ad) develops into a nucleation center. Our studies suggest the control of NH3(ad) dissociation are essential to improve epitaxial film quality as well as Ga-rich condition. In addition, the adsorbability of H(ad)s resulted from NH3(ad) dissociation were found to influence on the surface chemistry during film growth.  相似文献   

19.
杜玉杰  常本康  王晓晖  张俊举  李飙  付小倩 《物理学报》2012,61(5):57102-057102
采用基于第一性原理的密度泛函理论平面波超软赝势方法计算了 1/4ML Cs原子吸附 (2 × 2) GaN(0001) 表面的吸附能、能带结构、电子态密度、电荷布居数、功函数和光学性质. 计算发现, 1/4ML Cs 原子在 GaN(0001) 表面最稳定吸附位为 N 桥位, 吸附后表面仍呈现为金属导电特性, Cs原子吸附GaN(0001)表面后主要与表面 Ga 原子发生作用, Cs6s 态电子向最表面 Ga 原子转移, 引起表面功函数下降. 研究光学性质发现, Cs 原子吸附 GaN(0001) 表面后, 介电函数虚部、吸收谱、反射谱向低能方向移动.  相似文献   

20.
J. Wang  Y. Liu  M.H. Xie 《Surface science》2006,600(14):169-174
A new reconstruction of √3 × √3-R30° has been observed on a GaN film grown on a 6H-SiC (0 0 0 1)-√3 × √3 surface using RHEED and LEED experimental techniques. The experimental LEED PF shows that the GaN film is Ga-terminated hexagonal. The surface is a mixture of two structures with a single bilayer height difference between them. One is a √3 × √3-R30° reconstruction with Ga-adatoms occupying the T4 sites. Another is a Ga-terminated 1 × 1 with no extra Ga on top. The area ratio of the √3 × √3 part to the 1 × 1 part is slightly larger than 1. The first principle total energy calculations and Tensor-LEED I-V curves simulations further confirm this structure model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号