首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using the full-potential linearized augmented plane-wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential, we studied spin polarization induced by replacement of oxygen atoms by non-magnetic 2p impurities (B, C and N) in non-magnetic cubic SrMO3 perovskites, where M=Ti, Zr and Sn. The results show that the magnetization may appear because of the spin–split impurity bands inside the energy gap of the insulating SrMO3 matrix. Large magnetic moments are found for the impurity centers. Smaller magnetic moments are induced on the oxygen atoms around impurities. It is shown that SrTiO3:C and SrSnO3:C should be magnetic semiconductors while other compounds in this series (SrTiO3:B, SrTiO3:N and SrZrO3:C) are expected to exhibit magnetic half-metallic or pseudo-half-metallic properties.  相似文献   

2.
The structural, elastic, electronic and optical properties of the monoclinic BiScO3 are investigated in the framework of the density functional theory. The calculated structural parameters are in agreement with the experimental values. Moreover, the structural stability of BiScO3 system has been confirmed by the calculated elastic constants. The band structure, density of states, charge transfers and bond populations are also given. The results indicate that BiScO3 has a direct band gap of 3.36 eV between the occupied O 2p states and unoccupied Bi 6p states, and its bonding behavior is a combination of covalent and ionic nature. Finally, the absorption spectrum, refractive index, extinction coefficient, reflectivity, energy-loss function and dielectric function of the monoclinic BiScO3 are calculated. In addition, the variation of the static dielectric constants ε1(0) as a function of pressure for BiScO3 is also discussed.  相似文献   

3.
In present work the structural, electronic and optical properties of Pure and Mg-doped SrTiO3 perovskites are calculated via implementing density functional theory calculation. To explore these properties, ultra-soft pseudo-potential (USP) and generalized gradient approximation (GGA) is used. The inclusion of Mg at the Sr site in SrTiO3 not only affects the electronic band structure through generating new gamma points but also band gap increases from 1.788 eV to 1.866 eV. The introduction of Mg is well explained by the partial and total density of states which is affected by incorporating dopant in pure SrTiO3. Optical properties also affected by doping. The absorption edge shifted towards lower value from 0.37 eV to 0.06 eV as Mg-doped in the pure SrTiO3 that represented a red shift. The refractive index increases by doping as of 2.49 to 2.52.The doping of Mg in SrTiO3 affects positively in electronic and optical properties and makes this material a very interesting candidate for optical devices.  相似文献   

4.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

5.
We calculated the structural parameters, elastic, mechanical, electronic and optical properties of 3R- and 2H-CuGaO2 using the first-principles density-functional theory. The results show that the structural parameters of two phases are in good agreement with previous theoretical and experimental data. Two phases are mechanically stable, behave in ductile manner and have indirect band gap. The analyses of electronic structures and charge densities of two phases show mainly covalent nature in Cu-O bonds and coexistence of both ionic and covalent nature in Ga-O bonds. The optical properties are obtained and discussed, including the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss spectrum and complex conductivity function, which provide useful information for the future applications of CuGaO2.  相似文献   

6.
The structural, elastic, electronic and optical properties of CaXO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young’s moduli for ideal monocrystalline and for polycrystalline CaXO3 aggregates which we have classified as ductile in nature. Band structures reveal that these compounds are indirect energy band gap (R-G) semiconductors; the analysis of the site and momentum projected densities, valence charge density bond length, bond population and Milliken charges, shows that bonding is of covalent–ionic nature. We have found that the elastic constants C11, C12, C44 are in good correlation with the bonding properties. The optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are calculated for radiation up to 20 eV.  相似文献   

7.
<正>The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first-principles calculations.The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound.The optical properties,including complex dielectric function,absorption coefficient,refractive index,reflectivity,and loss function,and the origin of spectral peaks are analysed based on the electronic structures.The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.  相似文献   

8.
We present a computational method for the ab-initio study of the optical and magnetic properties using the augmented plane wave plus local orbitals (APW+lo) method. The calculations are presented within the local density (LDA) approximation. Erbium silicide (ErSi2) is representative of the whole trivalent heavy-rare-earth disilicides family, and its study will provide information valid for all of them. Thus, the study of its optical and magnetic properties is very important, especially for the calculation of magneto-optical quantities. In this paper the optical and magnetic properties are well described. Up to now no theoretical study on optical and magnetic properties of ErSi2 is available in the literature. We report theoretical calculations of the reel and imaginary parts of the dielectric function (DF), the refractive index and the extinction coefficient, the spectra of the reflectivity, the absorption coefficient, the energy-loss function (ELF), and the magnetic moments.  相似文献   

9.
蔡鲁刚  刘发民  钟文武 《中国物理 B》2010,19(9):97101-097101
This paper calculates the structural parameters, electronic and optical properties of orthorhombic distorted perovskite-type TbMnO3 by first principles using density functional theory within the generalised gradient approximation. The calculated equilibrium lattice constants are in a reasonable agreement with theoretical and experimental data. The energy band structure, density of states and partial density of states of elements are obtained. Band structures show that TbMnO3 is an indirect band gap between the O 2p states and Mn 3d states, and the band gap is of 0.48 eV agreeing with experimental result. Furthermore, the optical properties, including the dielectric function, absorption coefficient, optical reflectivity, refractive index and energy loss spectrum are calculated and analysed, showing that the TbMnO3 is a promising dielectric material.  相似文献   

10.
The structural stability, electronic structure, optical and thermodynamic properties of NaMgH3 have been investigated using the density functional theory. Good agreement is obtained for the bulk crystal structure using both the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. It is found from the electronic density of states (DOS) that the valence band is dominated by the hydrogen atoms while the conduction band is dominated by Na and Mg empty states. Also, the DOS reveals that NaMgH3 is a large gap insulator with direct band gap 3.4 eV. We have investigated the optical response of NaMgH3 in partial band to band contributions and the theoretical optical spectrum is presented and discussed in this study. Optical response calculation suggests that the imaginary part of dielectric function spectra is assigned to be the interband transition. The formation energy for NaMgH3 is investigated along different reaction pathways. We compare and discuss our result with the measured and calculated enthalpies of formation found in the literature.  相似文献   

11.
The highly accurate all electrons full potential linearized augmented plane wave method is used to calculate structural, electronic, and optical properties of cubic perovskites CsPbM3 (M=Cl, Br, I). The theoretically calculated lattice constants are found to be in good agreement with the experimentally measured values. It is found that all of these compounds are wide and direct bandgap semiconductors with bandgap located at R-symmetry point, while the bandgap decreases from Cl to I. The electron densities reveal strong ionic bonding between Cs and halides but strong covalent bonding between Pb and halides. Optical properties of these compounds like real and imaginary parts of dielectric functions, refractive indices, extinction coefficients, reflectivities, optical conductivities, and absorption coefficients are also calculated. The direct bandgap nature and high absorption power of these compounds in the visible-ultraviolet energy range imply that these perovskites can be used in optical and optoelectronic devices working in this range of the spectrum.  相似文献   

12.
The structural parameters, density of states, electronic band structure, charge density, and optical properties of orthorhombic SrBi2Ta2O9 have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principle density functional theory (DFT). The calculated structural parameters were in agreement with the previous theoretical and experimental data. The band structure showed an indirect (S to Γ) band gap with 2.071 eV. The chemical bonding along with population analysis has been studied. The complex dielectric function, refractive index, and extinction coefficient were calculated to understand the optical properties of this compound, which showed an optical anisotropy in the components of polarization directions (100), (010), and (001).  相似文献   

13.
基于密度泛函理论和赝势平面波近似法计算研究了立方钙钛矿KCaF_3的弹性、电子和光学性质.基态时,KCaF_3平衡晶格常数、体积弹性模量和实验及其他计算值一致.根据Hooke定律和Christoffel方程,研究了KCaF_3弹性常数Cij、体积弹性模量B、各向同性波速和弹性各向性异性因子随压力的变化关系.从电子能带理论出发,计算得到了KCaF_3电子能带、态密度和Milliken电荷布居数,并对其电子性质进行了详细分析.结果显示:立方钙钛矿KCaF_3为直接带隙绝缘体材料,其禁带宽度为6.22 e V;电荷主要从Ca和K原子向F原子转移;立方钙钛矿KCaF_3属于纯粹的共价型化合物.同时,本文还计算研究了KCaF_3的光学介电函数、吸收系数、复折射率、能量损失谱和反射系数等光学性质.  相似文献   

14.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

15.
We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural, elastic, mechanical, electronic, and optical properties of cubic Mg2TiO4. The calculated lattice parameter a is in good agreement with the experimental values. The independent elastic constants are calculated. The mechanical properties including bulk, shear and Young’s modulus, Poisson’s coefficient, compressibility and Lamé’s constants are obtained using the Voigt-Reuss-Hill method. Debye temperature is estimated using the Debye-Grüneisen model. Band structure, density of states and charge densities are shown and analyzed. In order to clarify the mechanism of optical transitions of cubic Mg2TiO4, the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and complex conductivity function are calculated.  相似文献   

16.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

17.
By employing first principles method of the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA), the correlation between valence electron concentration and structural, elastic, electronic as well as optical properties of A3SnO and ASnO3 compounds where A=Ca, Sr and Ba are investigated. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young's moduli for ideal monocrystalline and for polycrystalline A3SnO and ASnO3 aggregates. Band structures reveal that alkaline-earth tin oxides A3SnO are direct energy band gap (G-G) materials.The hardness of these compounds was explained using chemical bonding properties and Milliken charges transfer. The optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are calculated for radiation up to 20 eV. We have found that the static dielectric constants of all these compounds are in good agreement with Penn model.  相似文献   

18.
Structural, electronic, and optical properties of cubic Y2O3 were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties were calculated and these results were in good agreement with the previous work. Furthermore, in order to understand the optical properties of cubic Y2O3, the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss function, and complex conductivity function were calculated, which were in favorable agreement with the theoretical and experimental values. We explained the origin of the absorption peaks using the theories of crystal-field and molecular-orbital bonding and investigated the relation between electronic structure and optical properties.  相似文献   

19.
A theoretical study of structural, electronic and optical properties of cubic BaTiO3 and BaZrO3 perovskites is presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, its pressure derivative, band structure, density of states, pressure coefficients of energy gaps and refractive indices. The results are compared with previous calculations and experimental data.  相似文献   

20.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号