首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
报道了基于空芯光纤中气体受激拉曼散射效应的1.5μm波段光纤激光实验.利用高峰值功率、窄线宽、亚纳秒量级的1064nm微芯激光抽运一段充高压乙烷气体的空芯光纤.通过乙烷气体分子的受激拉曼散射,获得了1553nm的激光输出,峰值功率达到16.6kW,线宽小于0.2nm,脉宽约为435ps.该功率水平是目前在掺铒光纤中获得的最高峰值功率的4倍以上.该研究为同时实现高峰值功率和窄线宽的1.5μm波段光纤激光提供了一条新的技术途径.  相似文献   

2.
报道了基于空芯光纤中气体受激拉曼散射效应的1.5μm波段光纤激光实验.利用高峰值功率、窄线宽、亚纳秒量级的1064nm微芯激光抽运一段充高压乙烷气体的空芯光纤.通过乙烷气体分子的受激拉曼散射,获得了1553nm的激光输出,峰值功率达到16.6kW,线宽小于0.2nm,脉宽约为435ps.该功率水平是目前在掺铒光纤中获得的最高峰值功率的4倍以上.该研究为同时实现高峰值功率和窄线宽的1.5μm波段光纤激光提供了一条新的技术途径.  相似文献   

3.
报道了一种基于空芯光子晶体光纤中氘气转动受激拉曼散射的单程高效光纤气体激光光源。因空芯光子晶体光纤具有特殊的传输谱,增益相对较大的振动受激拉曼散射被很好地抑制,使得泵浦激光能够高效地向转动斯托克斯光转化。采用自行搭建的1540nm纳秒脉冲光纤放大器,泵浦一段长为20m、充高压氘气的空芯光子晶体光纤,在单程结构中实现了高效的1645nm拉曼激光输出。当气压为2 MPa时,最大平均输出功率约为0.8 W(单脉冲能量约为1.6μJ),激光光源斜率效率约为71.4%。研究结果为1.7μm波段光纤激光的实现提供了一条简单有效的新途径。  相似文献   

4.
《光学学报》2021,41(3):154-160
报道了第一个连续波全光纤气体拉曼激光光源。采用实芯单模光纤与带隙型空芯光纤熔接的方法,制备了长度为50 m、充高压氢气的全光纤结构气体腔,以一个高功率连续波1540 nm光纤放大器为泵浦源,利用氢气分子的纯转动受激拉曼散射有效实现了1693 nm斯托克斯连续激光输出。进一步,通过在气体腔输出端熔接一个中心波长为1540 nm的高反射率光纤布拉格光栅,使得拉曼阈值降低了38.2%,斯托克斯光输出功率最大为2.15 W,腔内拉曼转换效率为72.2%,由于熔接损耗,相对总泵浦光功率的光光转换效率为31.7%。该研究结果为实现高效紧凑的高功率1.7μm光纤激光器提供了一条可行的技术方案。  相似文献   

5.
报道了一种基于空芯光子晶体光纤中氢气受激拉曼散射的新型1.7μm光纤激光光源。建立了仅包含泵浦光和一阶斯托克斯光的简单稳态耦合波方程,并进行了仿真计算。采用自制的1550 nm纳秒脉冲光纤放大器,泵浦一段长约3 m、充高压氢气的商用空芯光子晶体光纤,利用氢气分子的转动受激拉曼散射实现了1705 nm斯托克斯波的有效转换。气压为1.2 MPa时,最大平均输出功率约0.5 W(单脉冲能量约为2.5μJ),最大光光转换效率约为32%(相对总的泵浦功率)。研究结果为实现高功率1.7μm波段近红外激光输出提供了一条有效的新途径。  相似文献   

6.
报道了基于充气负曲率空芯光纤的红绿蓝色拉曼激光实验。利用1064nm亚纳秒微片脉冲激光器抽运一段充高压氢气的Ice-cream型负曲率空芯光纤,通过氢气分子的级联受激拉曼散射,同时获得了波长分别为737.6,564.2,457.1nm的一阶、二阶、三阶振动反斯托克斯激光输出。通过调节抽运激光功率和气体气压,可以控制红、绿、蓝三色激光的相对强度和输出模式。  相似文献   

7.
报道了全光纤2.15μm波段光纤气体拉曼激光器。将实芯单模光纤与空芯光子晶体光纤直接熔接制备成全光纤气体腔,并在实芯光纤上刻写长周期光纤光栅,防止菲涅耳反射回光对泵浦源造成损坏。以1971 nm脉冲光纤放大器作为泵浦源,当腔内气压为1.4 GPa时,2.15μm拉曼光的最大平均功率约为0.87 W,受限于较高的拉曼阈值,光光转换效率只有19%。本研究为实现2.15μm光纤激光光源提供了一种新的可行的技术方案。  相似文献   

8.
受激拉曼散射是扩展激光波长的重要方法,但是气体中非线性光学过程对受激拉曼光的影响非常复杂,实验研究受激拉曼光与气体气压及拉曼池耦合透镜焦距的关系是实际应用受激拉曼光的重要手段。设计了受激拉曼实验装置及其测量系统,采用Nd:YAG激光器的四倍频激光266 nm作为抽运源,活性气体(H2、D2及H2/D2混合气体)分别被密封在长为100 cm的拉曼管中,输出的拉曼激光由棱镜分光后用能量计采集保存用以研究拉曼散射特性。给出了H2、D2及H2/D2混合气体的各级Stokes和反Stokes受激拉曼激光能量与气体气压及透镜焦距的关系。获得了217.84~447.15 nm之间的12条激光谱线,有效地扩展了拉曼激光的应用范围。研究结果对气体受激拉曼光的实际应用具有十分重要的价值。  相似文献   

9.
受激拉曼散射是扩展激光波长的重要方法,但是气体中非线性光学过程对受激拉曼光的影响非常复杂,实验研究受激拉曼光与气体气压及拉曼池耦合透镜焦距的关系是实际应用受激拉曼光的重要手段。设计了受激拉曼实验装置及其测量系统,采用Nd:YAG激光器的四倍频激光266 nm作为抽运源,活性气体(H2、D2及H2/D2混合气体)分别被密封在长为100 cm的拉曼管中,输出的拉曼激光由棱镜分光后用能量计采集保存用以研究拉曼散射特性。给出了H2、D2及H2/D2混合气体的各级Stokes和反Stokes受激拉曼激光能量与气体气压及透镜焦距的关系。获得了217.84--447.15 nm之间的12条激光谱线,有效地扩展了拉曼激光的应用范围。研究结果对气体受激拉曼光的实际应用具有十分重要的价值。  相似文献   

10.
基于后向泵浦结构搭建了1050 nm光纤激光放大器,将20/400μm的双包层大模场掺镱光纤作为增益光纤,采用976 nm稳波长半导体激光器作为泵浦源。通过优化增益光纤长度,对短波长光纤放大器中的放大自发辐射效应进行抑制。采取优化种子时序稳定性的方法提升受激拉曼散射效应的阈值,实现了最高3.5 kW的功率输出。在最高输出功率下:输出激光在X方向和Y方向的光束质量因子分别约为1.33和1.25,此时的3 dB带宽为4.07 nm,光光转换效率为86.3%;时域信号稳定,没有出现模式不稳定现象。  相似文献   

11.
多波长级联拉曼光纤激光器的设计   总被引:1,自引:0,他引:1  
基于稳态条件下描述光纤中受激拉曼散射效应的光功率耦合方程组,提出一种新的多波长级联拉曼光纤激光器的设计算法.结合遗传算法和打靶法的优点,采取对每一代种群中少数优良个体进行几次打靶,使得种群中目标函数最优化值附近的个体加速收敛.以500 m掺磷光纤为增益介质、光纤布拉格光栅构成谐振腔的三波长(1427 nm, 1455 nm, 1480 nm)级联拉曼光纤激光器为例,采用该算法计算了其输出特性.结果表明,总输出功率与抽运功率近似成线性关系,斜率效率约51%;由于谐振腔中三个输出波长相互之间的受激拉曼散射作用产生的能量转移,使得输出的长波长斯托克斯光斜率效率大于短波长斯托克斯光斜率效率.  相似文献   

12.
高功率窄线宽光纤激光器在非线性频率转换、光谱合成以及相干合成等领域有着重要的应用前景。本文基于自研的复合腔结构窄线宽振荡器作为种子,采用单级主振荡功率放大技术(MOPA),实现了5 kW高效率的近单模窄谱激光输出。通过优化振荡器的时序特性和放大级结构,受激拉曼散射、光谱展宽和热致模式不稳定效应得到综合抑制。在最高功率时,信号光的3 dB和20 dB线宽分别为0.48 nm和2.1 nm,放大器的斜率效率约为86.1%,拉曼抑制比为28.3 dB,光束质量M2约1.35。本研究工作对于高功率窄线宽光纤激光的发展和研究具有重要的指导意义。  相似文献   

13.
双端输出光纤激光振荡器可以通过一个单谐振腔结构实现两路激光输出,能够减少高功率光纤激光系统的体积和成本,在工业领域有着很好的应用前景。基于双端泵浦谐振腔结构,采用稳波长981 nm光纤耦合半导体激光器(LD)泵浦纤芯/包层直径为30/400μm的双包层掺镱光纤,首次实现了总功率大于8 kW的双端输出光纤激光振荡器。在总最高泵浦功率为10.951 kW时,A端输出功率为3769 W, B端输出功率为4400 W,总功率为8169 W,激光器光-光转换效率74.6%,A、B端激光光束质量M2因子分别约2.13和2.36。在最高输出功率时,两端输出激光中均未观察到动态模式不稳定效应(TMI)和受激拉曼散射(SRS),通过进一步增加泵浦功率,有望实现更高功率的激光输出。  相似文献   

14.
 受激拉曼散射和热效应会限制光纤激光器功率的提高。利用高功率光纤激光器的速率方程和热传导方程,理论研究了双端泵浦和分布泵浦下双包层光纤激光器的受激拉曼散射和热效应,得到了光纤中的泵浦光、激光和斯托克斯光的功率分布,光纤激光器的输出特性以及光纤中的温度分布。分析表明,当泵浦功率增大到一定值时,光纤激光器中出现SRS,一部分激光功率会转移给斯托克斯光,影响激光功率进一步提高;与双端泵浦方式相比,分布泵浦下光纤激光器的斜率效率和最大输出功率相差不大,但是,光纤中的温度分布被有效地降低,因此,分布泵浦方式更为有效。  相似文献   

15.
报道了基于空心光子晶体光纤中氢气分子振动受激拉曼散射(SRS)的单程高增益1.9μm光纤气体激光器。用一个线偏振1064nm亚纳秒脉冲微芯激光器抽运一段长6.5m、充高压氢气的低损耗负曲率空心光纤,实现了到氢气分子一级振动斯托克斯波1907nm的有效转换。气压为2.3MPa时最大能量转换效率大于27%,相应的量子转换效率大于48%,激光平均功率约为10mW,峰值功率大于2000W。为实现高功率、窄线宽、大范围调谐的紧凑型中红外光纤激光器提供了一条潜在的有效途径。  相似文献   

16.
模式不稳定效应和非线性效应已经成为高功率光纤激光器中限制输出功率和光束质量进一步提升的主要障碍.采用改进的化学气相沉积工艺结合溶液掺杂技术制备25/400μm的M型掺镱双包层光纤,纤芯和中间凹陷区域的数值孔径分别为0.054和0.025.基于该光纤搭建976 nm双向泵浦全光纤结构放大器.在泵浦光功率为3283 W时,获得2285 W中心波长为1080 nm的激光输出,3 dB线宽为3.01 nm,测量的光束质量因子为1.42,且未出现受激拉曼散射现象.这是目前基于M型掺镱光纤实现的最高输出功率,通过优化光纤结构参数实现功率进一步提升是有希望的.  相似文献   

17.
报道了一个全光纤主振荡功率放大结构的窄线宽连续掺铥光纤激光器,该激光器由窄线宽连续掺铥光纤激光种子源和两级包层抽运掺铥光纤放大器组成.自制的窄线宽掺铥光纤激光种子源经过两级高功率包层抽运掺铥光纤放大器之后,最高平均输出功率为342 W,掺铥光纤功率放大器的斜率效率为56%,输出激光的中心波长为2000.3 nm,3 d B光谱带宽仅为90 pm.在放大过程中,功率放大器的反向监测端没有观察到受激布里渊散射效应,输出功率仅受限于当前可用的793 nm半导体抽运源的功率.据我们所知,该结果为目前国际上2μm波段全光纤结构窄线宽激光器所产生的最高输出功率.  相似文献   

18.
高功率窄线宽光纤激光器在相干探测、功率光谱合成等方面具有广泛的应用前景.分析了高功率窄线宽光纤激光器中受激布里渊散射效应的抑制方法,以及正弦相位调制光谱展宽理论.采用正弦相位调制技术将单频激光器的线宽展宽至2.9 GHz,通过三级放大结构对输出功率为50 mW的窄线宽种子源进行放大,实现了中心波长1064.34 nm、线宽2.9 GHz、最大功率780 W的激光输出,光—光转换效率79%,光束质量M2x=1.44,M2y=1.43.分析了相位调制前后输出功率提高的原因,认为正弦相位调制增加的纵模降低了光纤中的功率谱密度,提高了输出激光的受激布里渊散射阈值,促使相位调制后的输出功率大幅提高.该激光器的输出功率仅受限于抽运功率,进一步提高抽运功率,有望实现更高功率的窄线宽光纤激光输出.  相似文献   

19.
用于光纤拉曼放大器抽运源的单级光纤拉曼激光器   总被引:5,自引:0,他引:5  
张敏明  刘德明  王英  黄德修 《光学学报》2005,25(12):634-1638
抽运光源是光纤拉曼放大器应用于密集波分复用系统的关键技术,设计了一种紧凑型的808nm激光二极管抽运的基于钒酸钇(Nd^3+:YVO4)晶体1342nm固体激光器模块,提出利用上述1342nm固体激光器抽运基于光纤光栅的单级全光纤型拉曼谐振器获得1.4μm激光输出的光纤拉曼激光器,分析了固体激光器的阈值特性、性能优化方法和单级光纤拉曼谐振器的设计方法。上述1342nm固体激光器模块在抽运功率2W时获得了最大655mW的激光输出功率和42.6%的斜率效率,单级拉曼谐振器的1342nm到1.4μm光功率转换斜率效率达75%,在1425nm、1438nm、1455nm和1490nm处的输出功率达到300mW以上。最后给出基于1.4μm光纤拉曼激光器抽运的宽带平坦放大的光纤拉曼放大器的结构参量和性能测试结果。  相似文献   

20.
罗丹明B荧光增强苯受激拉曼散射研究   总被引:1,自引:1,他引:0  
将液芯光纤技术与荧光增强受激拉曼散射技术相结合,能够大大增强受激拉曼散射光谱强度,降低受激拉曼散射阈值。通过对罗丹明B苯溶液在液芯光纤中的受激拉曼散射进行研究,结果表明:荧光染料Rhodamine B可以降低苯溶液的各阶受激拉曼散射阈值近一个数量级;在一定浓度范围内(10-6mol/L~10-8mol/L)各阶Stokes阈值随浓度降低而降低,并在理论上给出了解释。并且理论推导了在荧光种子作用下的四阶耦合波方程。液芯光纤中的受激拉曼光谱技术在对实现宽带受激辐射激光器、种子激光,以及生物大分子结构研究、生物分子的非生物过程研究等领域等有光明应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号