首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以提升遥感图像和多聚焦图像的融合精度为目的,结合非下采样剪切波变换(NSST)可以捕捉图像的细节特征,提出了一种NSST和加权区域特性的图像融合方法。利用非下采样剪切波变换对源图像进行多尺度、多方向分解,得到低频子带和高频子带,低频子带系数采用改进梯度投影的非负矩阵分解(NMF),高频子带系数采用加权区域能量和区域方差相结合的融合策略,然后应用非下采样剪切波的逆变换得到融合的图像。实验结果表明:该方法从主观视觉方面很好地保留了多幅图像的有用信息,给出该方法与其他融合算法在客观评价指标应用信息熵EN、互信息MI和加权边缘信息量QAB/F的比较结果 。  相似文献   

2.
改进投影梯度NMF的NSST域多光谱与全色图像融合   总被引:1,自引:0,他引:1  
为了有效结合多光谱图像的光谱信息和全色图像的空间细节信息,进一步改善融合后多光谱图像的质量,提出了基于改进投影梯度非负矩阵分解(NMF)和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域多光谱和全色图像融合方法。对多光谱图像进行亮度-色度-饱和度(IHS)变换,将其亮度分量与全色图像进行直方图匹配,增强全色图像的对比度;分别对多光谱图像的亮度分量和全色图像进行NSST变换,对二者的低频系数利用改进投影梯度NMF进行融合,进一步提高融合后图像的空间信息;对于高频子带系数,采用基于改进PCNN的方法进行融合,增强图像的细节信息;经非下采样Shearlet逆变换得到融合后的亮度分量,进行IHS逆变换得到融合图像。大量实验结果表明,所提出的方法在保留多光谱图像光谱信息的同时,增强了融合图像的空间细节表现能力,优于现有的基于IHS变换、基于非下采样Contourlet变换(NSCT)和NMF、基于NSCT和PCNN等几种融合方法。  相似文献   

3.
针对传统的红外与可见光图像融合算法提取目标信息不突出的问题,提出一种基于非下采样剪切波变换和稀疏结构特征的融合方法.首先用非下采样剪切波变换分解源图像;然后通过主成分分析提取低频子带系数中边缘和轮廓等显著特征,引导低频成分融合规则的设计,同时基于结构信息的稀疏性指导融合高频子带系数;最后经过非下采样剪切波变换逆变换得到融合后的图像.实验结果表明,该方法在保留可见光图像背景信息的基础上,突显了红外图像的结构信息,有效提高了融合效果.  相似文献   

4.
针对传统图像融合方法造成的边缘模糊、细节损失、图像对比度与清晰度容易降低等问题,利用非下采样轮廓波变换,提出一种基于直觉模糊集和区域对比度的红外与可见光图像融合算法.首先,使用非下采样轮廓波变换将源图像分解,分别得到源图像的高频和低频成分.其次,利用直觉模糊集灵活准确描述模糊概念的特性,构建双高斯隶属函数对低频成分进行融合;利用区域对比度详细描述图像纹理信息的特点,采用多区域特征对比度结合距离分析的融合规则,对高频成分进行融合.最后使用非下采样轮廓波逆变换得到融合图像.实验结果表明,与其它融合算法相比,该算法提高了图像对比度,保留了源图像中的边缘和细节信息,且得到的融合结果具有更优的客观评价值.  相似文献   

5.
由于可见光图像在低光照环境下其可视性较差,为了提高红外与弱可见光图像融合的效果,提出了一种基于对比度增强和柯西模糊函数的图像融合算法.首先用改进的引导滤波自适应增强提高弱可见光图像暗区域的可视性;其次,利用非下采样剪切波变换将红外和增强后的弱可见光图像分解,得到相应的低频和高频子带;再后,分别用直觉模糊集构建柯西隶属函数和自适应双通道脉冲发放皮层模型对低频、高频子带进行融合;最后,使用非下采样剪切波变换对融合得到的高低频子带进行逆变换重构得到融合图像.实验结果表明,与其它融合算法相比,该算法有效地增强了弱可见光图像的暗区域,保留了更多的背景信息,从而提高了融合图像的对比度和清晰度.  相似文献   

6.
为了使融合结果突出目标并发掘更多细节,提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet变换(NSST),并对所得低频分量进行引导滤波增强。由增强后的红外图像和可见光图像低频分量基于目标提取的融合规则得到融合图像的低频分量,高频分量则根据方向子带信息和取大来确定。最后经NSST逆变换得到融合图像。大量实验结果表明,本文方法在增强融合图像空间细节的同时,有效突出了目标,并且在信息熵、平均梯度等指标上优于基于拉普拉斯金字塔变换、基于小波变换、基于平稳小波变换、基于非下采样Contourlet变换(NSCT)、基于目标提取与NSCT变换等。  相似文献   

7.
为了使融合结果突出目标并发掘更多细节,提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet变换(NSST),并对所得低频分量进行引导滤波增强。由增强后的红外图像和可见光图像低频分量基于目标提取的融合规则得到融合图像的低频分量,高频分量则根据方向子带信息和取大来确定。最后经NSST逆变换得到融合图像。大量实验结果表明,本文方法在增强融合图像空间细节的同时,有效突出了目标,并且在信息熵、平均梯度等指标上优于基于拉普拉斯金字塔变换、基于小波变换、基于平稳小波变换、基于非下采样Contourlet变换(NSCT)、基于目标提取与NSCT变换等。  相似文献   

8.
《光学技术》2021,47(3):352-358
为了提高遥感图像的融合质量,使其兼顾较好的纹理特征与对比度,提出了非下采样变换耦合双重制约模型的遥感图像融合算法(NSST)。通过IHS模型来解析多光谱图像(MS),提取其对应的强度(I)、色调(H)、饱和度(S)成分;借助NSST,从I成分和全色图像(PAN)中解析出低频和高频系数;通过信息熵和均值模型,计算出图像富含的信息及亮度丰富度,以完成低频系数的融合。利用高频系数与方向矩阵的卷积运算,得出图像的纹理特征,计算图像的标准差,获取对比度信息。在联合纹理特征和对比度,构造双重制约模型,完成高频系数的融合。再对融合系数完成逆NSST和逆IHS运算,得出融合图像。实验数据表明,较现有的融合技术而言,所提算法的融合图像含有更为丰富的纹理与更高的对比度。  相似文献   

9.
陈清江  李毅  柴昱洲 《应用光学》2018,39(5):655-666
遥感图像融合是指将不同传感器得到的具有不同观测特性的图像信息有选择、有策略地结合起来,以得到具有更优观测特性的新图像的方法。提出一种深度学习结合非下采样剪切波变换(NSST)的遥感图像融合算法,利用改进的超分辨率重建网络对多光谱图像(MS)进行空间分辨率增强,全色图像(PAN)参考重建后的多光谱图像的每个分量进行直方图匹配。将对应通道的图像进行NSST变换,分别得到低频子带和若干高频子带。低频子带通过使用基于梯度域的自适应加权平均规则来获得低频融合系数,高频子带采用局部空间频率最大值规则来获得高频融合系数,最后经逆NSST变换重构获得融合图像。对不同数据集中的City和Inland多光谱图像采用双三次插值方法进行上采样,作者提出算法的通用图像质量指数(UIQI)分别为0.988 6和0.932 1,光谱角映射(SAM)分别为1.872 1和2.143 2。实验结果表明,图像结构更加清晰,保存的光谱信息更加完整,融合图像质量优于对比算法,融合图像更利于人类视觉观察。  相似文献   

10.
为了最大限度地保留多光谱图像的光谱特性和全色图像的空间细节,提出基于最小Hausdorff距离和非下采样剪切波变换(NSST)的遥感图像融合方法.首先,将原多光谱图像进行主成分分析(PCA)获得其第一主分量,选择NSST对第一主分量和全色图像分别进行分解,得到相应的低频子带系数和高频子带系数.其次,对低频子带系数采用基于稀疏表示的融合策略,稀疏系数与区域空间频率相结合,根据区域空间频率选择权值,对稀疏系数进行加权;对于高频子带系数充分考虑其邻域系数相关性,提出采用最小Hausdorff距离表征相应区域相关性,根据相关性不同采用不同的融合策略.最后,对融合系数进行NSST逆变换得到融合后的第一主分量,再将新的第一主分量与其他高阶主分量进行PCA逆变换得到融合图像.选择三组QuickBird卫星图像和一组SPOT卫星图像进行测试,与传统的融合策略算法相比,本文方法获得的融合结果客观评价指标更优,且主观视觉效果更好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号