首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 721 毫秒
1.
Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid–liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21 mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid–liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04 mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this extraction step leading to a final total purity of about 85%.  相似文献   

2.
The DNA binding fusion protein, LacI–His6–GFP, together with the conjugate PEG–IDA–Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600–DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG–IDA–Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG–dextran system as a second extraction system, with 80–90% of pDNA partitioning to the bottom phase. This represents about 7.4 μg of pDNA extracted per 1 mL of pUC19 desalted lysate.  相似文献   

3.
The partition of human antibodies in aqueous two-phase systems (ATPSs) of polyethylene glycol (PEG) and phosphate was systematically studied using first pure proteins systems and then an artificial mixture of proteins containing 1mg/ml human immunoglobulin G (IgG), 10mg/ml serum albumin and 2mg/ml myoglobin. Preliminary results obtained using pure proteins systems indicated that the PEG molecular weight and concentration, the pH value and the salts concentration had a pronounced effect on the partitioning behaviour of all proteins. For high ionic strengths and pH values higher than the isoelectric point (pI) of the contaminant proteins, IgG could be selectively recovered on the top phase. According to these results, a face centred composite design was performed in order to optimise the purification of IgG from the mixture of proteins. The optimal conditions for the isolation of IgG were observed for high concentrations of NaCl and low concentrations of both phase forming components. The best purification was achieved using an ATPS containing 8% (w/w) PEG 3350, 10% (w/w) phosphate pH 6 and 15% (w/w) NaCl. A recovery yield of 101+/-7%, a purity of 99+/-0% and a yield of native IgG of 97+/-4% were obtained. Back extraction studies of IgG to a new phosphate phase were performed and higher yields were obtained using 10% phosphate buffer at pH 6. The total extraction yield was 76% and the purity 100%.  相似文献   

4.
We have evaluated a process incorporating aqueous two-phase extraction, hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for the purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cell supernatant. These unit operations were chosen not only for allowing the removal of target impurities but also for facilitating the integration of different process units without the need for any conditioning step. Extraction in aqueous two-phase systems (ATPSs), composed of polyethylene glycol (PEG) and sodium citrate, allowed the concentration of the antibodies in the citrate-rich phase and the removal of the most hydrophobic compounds in the PEG-rich phase. An ATPS composed of 10% (w/w) PEG 3350 and 12% (w/w) citrate, at pH 6, allowed the recovery of IgG with a 97% yield, 41% HPLC purity and 72% protein purity. This bottom phase was then directly loaded on a phenyl-Sepharose HIC column. This intermediate purification step allowed the capture of the antibodies using a citrate mobile phase with 99% of the antibody recovered in the elution fractions, with 86% HPLC purity and 91% protein purity. Finally, SEC allowed the final polishing by removing IgG aggregates. HIC-eluted fractions were directly injected in a Superose 6 size-exclusion column affording a 100% pure IgG solution with 90% yield.  相似文献   

5.
The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.  相似文献   

6.
The purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant was studied using an aqueous two-phase system (ATPS) composed of ethylene oxide/propylene oxide (UCON) and dextran. In UCON/dextran systems IgG partitions preferentially to the less hydrophobic dextran-rich phase (Kp<1). The addition of triethylene glycol-diglutaric acid (TEG-COOH) shifted the IgG partition into the upper phase showing significant improvements in both the recovery yields and purity. The purification of IgG from a CHO cell supernatant with UCON 2000/dextran/TEG-COOH system was optimised using a central composite design. Using an ATPS composed of 8% UCON, 6% dextran and 20% TEG-COOH, IgG was purified, in two steps, with a global yield of 85% and 88% purity. Statistical valid models were obtained to predict the effect of the experimental conditions on the IgG yield and purity, for both extraction and back-extraction steps. A system composed of 10% UCON, 5.5% dextran and 20% TEG-COOH was identified as the best compromise between final purity and yield.  相似文献   

7.
The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger-GST (Glutathione-S-Transferase) fusion protein was examined in PEG-dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600-DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger-GST fusion protein in a PEG 1000-DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.  相似文献   

8.
This work studied the possibility of using polyethyleimine (PEI) as an affinity ligand for the purification of plasmid DNA (pDNA) from alkaline lysates using aqueous two-phase systems (ATPSs). The goal was to find conditions under which this cationic polymer could steer the partition of pDNA to the phase where less impurities accumulate. In poly(ethylene glycol) (PEG)/ammonium sulphate systems, neither free nor PEGylated PEI (pPEI) were able to change the partition of pDNA. This is probably due to the high salt concentration present in these systems that impair the interaction between pDNA and PEI. In PEG 3350/dextran 110 systems, the desired effect could be observed but 0.2-0.5M ammonium sulphate had to be added to prevent the co-partition of RNA to the same phase. These results were used to develop a methodology to obtain polyplexes from alkaline lysates in a two-step ATPSs extraction process. In the first step, a PEG 600/ammonium sulphate system is used to remove most impurities to the top phase. The pDNA-containing bottom phase is then isolated and contacted with a second PEG 3350/dextran 110 system supplemented with a small amount of pPEI (0.2%). Plasmid yield was 100% and the final preparation had no RNA and only small amounts of contaminant protein. Additionally, pDNA was obtained in the form of 53nm-sized polyplexes which are likely to suit specific gene delivery applications.  相似文献   

9.
Aqueous two-phase systems for protein separation: a perspective   总被引:1,自引:0,他引:1  
Aqueous two-phase systems (ATPS) that are formed by mixing a polymer (usually polyethylene glycol, PEG) and a salt (e.g. phosphate, sulphate or citrate) or two polymers and water can be effectively used for the separation and purification of proteins. The partitioning between both phases is dependent on the surface properties of the proteins and on the properties of the two phase system. The mechanism of partitioning is complex and not very easy to predict but, as this review paper shows, some very clear trends can be established. Hydrophobicity is the main determinant in the partitioning of proteins and can be measured in many different ways. The two methods that are more attractive, depending on the ATPS used (PEG/salt, PEG/polymer), are those that consider the 3-D structure and the hydrophobicity of AA on the surface and the one based on precipitation with ammonium sulphate (parameter 1/m*). The effect of charge has a relatively small effect on the partitioning of proteins in PEG/salt systems but is more important in PEG/dextran systems. Protein concentration has an important effect on the partitioning of proteins in ATPS. This depends on the higher levels of solubility of the protein in each of the phases and hence the partitioning observed at low protein concentrations can be very different to that observed at high concentrations. In virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. Furthermore, true partitioning behavior, which is independent of the protein concentration, only occurs at relatively low protein concentration. As the concentration of a protein exceeds relatively low values, precipitation at the interface and in suspension can be observed. This protein precipitate is in equilibrium with the protein solubilized in each of the phases. Regarding the effect of protein molecular weight, no clear trend of the effect on partitioning has been found, apart from PEG/dextran systems where proteins with higher molecular weights partitioned more readily to the bottom phase. Bioaffinity has been shown in many cases to have an important effect on the partitioning of proteins. The practical application of ATPS has been demonstrated in many cases including a number of industrial applications with excellent levels of purity and yield. This separation and purification has also been successfully used for the separation of virus and virus-like particles.  相似文献   

10.
Milk of transgenic pigs secreting recombinant human Protein C (rHPC) was used as a model system to determine the utility of aqueous two-phase extraction systems (ATPS) for the initial step in the purification of proteins from milk. The major challenges in purification of recombinant proteins from milk are removal of casein micelles (that foul processing equipment) and elimination of the host milk proteins from the final product. When milk was partitioned in ATPS composed of polyethylene glycol (PEG) and ammonium sulfate (AS), the phases were clarified and most of the caseins precipitated at the interphase. The partition coefficients of the major milk proteins and rHPC were dependent upon the molecular weight of the PEG used in the ATPS. Higher-partition coefficients of the major whey proteins, Β-lactoglobulin, and α-lactalbumin were observed in ATPS made up of lower molecular-weight PEG (1000 or 1450) as compared to systems using higher molecular-weight PEG. Lowering the pH of the ATPS from 7.5 to 6.0 resulted in increased precipitation of the caseins and decreased their concentration in both phases. rHPC had a partition coefficient of 0.04 in a system composed of AS and PEG 1450. The rHPC in pig milk was shown to be highly heterogenous by two-dimensional gel electrophoresis. The heterogeneity was owing to inefficient proteolytic processing of the single chain to the heterodimeric form and differences in glycosylation and other post-translational processing. Differential partitioning of the multiple forms of purified rHPC in the ATPS was not observed. rHPC after processing in ATPS was recovered in a clear phase free of most major milk proteins. ATPS are useful as the initial processing step in the purification of recombinant proteins from milk because clarification and enrichment is combined in a single step.  相似文献   

11.
Immobilized metal ions were used for the affinity extraction of proteins in aqueous two-phase systems composed of polyethylene glycol (PEG) and dextran or PEG and salt. Soluble chelating polymers were prepared by covalent attachment of metal-chelating groups to PEG. The effect on the partitioning of proteins of such chelating PEG derivatives coordinated with different metal ions is demonstrated. The proteins studied were alpha 2-macroglobulin, tissue plasminogen activator, superoxide dismutase and monoclonal antibodies. The results indicate that immobilized metal ion affinity partitioning provides excellent potential for the extraction of proteins.  相似文献   

12.
报道了由正负离子表面活性剂与高聚物混合溶液形成的一种可用于蛋白质的分离及分析的新型双水相萃取体系.研究了正负离子表面活性剂(溴化十二烷基三乙铵/十二烷基硫酸钠)分别与葡聚糖和聚乙二醇混合双水相体系的形成规律、相行为及牛血清蛋白和溶菌酶在双水相体系中的分配.通过在高聚物分子中接上亲和配基,研究蛋白质在双水相体系中的亲和分配.结果表明,在该体系中,表面活性剂与高聚物分别富集于不同相中.升高温度及加入无机盐均可促进双水相体系的形成,不同蛋白质可分配于不同的相中.亲和配基的引入极大地增强了蛋白质分配的选择性.  相似文献   

13.
Aqueous two-phase systems (ATPS) composed of polyethylene glycol (PEG)-citrate have been used for enzyme partitioning studies. The behavior of lactate dehydrogenase (LDH) from bovine heart crude extract was analyzed using a two-level factorial design in which the PEG molar mass and concentration, the citrate concentration were selected as independent variables, while the purification factor, the partition coefficient (K) and the activity yield were selected as responses. The statistical analysis revealed the effect of PEG molar mass on K. LDH exhibited a better partitioning toward PEG-rich phase and the highest K value (1079.81) was obtained with 42% (w/w) PEG 400 and 7.5% (w/w) citrate concentration. PEG molar mass also influenced the purification factor of the enzyme in the top phase. Possibly these ATPS remove inhibitors present in the extract affording higher enzyme yield.  相似文献   

14.
High-performance monolith affinity chromatography employing protein A resins has been introduced previously for the fast purification of IgG from different sources. Here we describe the design and evaluation of a fast and specific method for quantitation of IgG from purified samples as well as crude supernatant from Chinese hamster ovary (CHO) cells. We used a commercially available affinity monolith with protein A as affinity ligand (CIM protein A HLD disk). Interferences of CHO host cell proteins with the quantitation of IgG from CHO supernatant were eliminated by a careful choice of the equilibration buffer. With this method developed, it is possible to quantify IgG within 5 min in a concentration range of 23-250 microg/ml. The calibration range of the method could be extended from 4 to 1000 microg/ml by adjusting the injection volume. The method was successfully validated by measuring the low limit of detection and quantification, inter- and intra-day precision and selectivity.  相似文献   

15.
The cationization of poly(ethylene glycol)s, PEG 4000 and PEG 6000, under matrix-assisted laser desorption/ionization conditions was studied by using different concentration ratios of the sodium ion, as the reference ion, and another alkali metal ion (Li(+), K(+), Rb(+), Cs(+)). A linear correlation was found between the intensity ratio of the sodiated PEGs and PEGs cationized with alkali metal ions versus the initial concentration ratio of sodium and alkali metal ions. The slopes of these straight lines are proposed as a novel selectivity ratio for the ionization process. The intensity distribution of the cationized PEGs was also investigated. It was found that the cationized oligomers follow Poisson statistics. The M(n) and M(w) values were also evaluated. An explanation for the observed effects is given.  相似文献   

16.
In this study, a novel pH-sensitive and reversible water-soluble polymer(P(ABC)) forming aqueous two-phase systems(ATPS) was synthesized by using 2-(dimethylamino)ethyl methacrylate, t-butyl methacrylate, and methyl methacrylate as monomers and 2,2'-azo-bis-isobutyronitrile as initiator. The P(ABC) could be recovered by adjusting isoelectric point (PI) to 8.4, and recovery at PI could reach 95%. ATPS was formed by 5% (w/w) P(ABC) and 10% (w/w) PEG20000. The partition coefficient K of lysozyme was 6.8, and the partition coefficient K of bovine serum albumin could reach 12.5 in the ATPS.  相似文献   

17.
In the present study, an aqueous two-phase partitioning system (ATPS) was developed and evaluated as an initial fractionation step for therapeutic antibodies and enzymes from tobacco extracts. A detailed study has been performed to analyze the effect of pH, ionic composition of the system, types of polymers and their molecular weight and concentration, on the partitioning behavior of tobacco proteins and human anti-human immunodeficiency virus (HIV) monoclonal antibody 2F5 (mAb 2F5). A polyethyleneglycol/phosphate (PEG/Pi) aqueous two-phase system composed of 12% (w/w) PEG 1500 and 13% (w/w) phosphate buffer, pH 5, was selected as the system with the highest selectivity of antibody over native tobacco proteins. Under selected conditions, sufficient purification (3-4-fold) with high recovery at the bottom phase (approximately 95%) was achieved for mAb 2F5. In addition, the system allows removal of plant-derived compounds, such as phenolics and toxic alkaloids. The antibody fraction may be directly applied to a Protein A affinity column without any further pre-treatment, thus allowing homogenous antibody preparation. Analysis of the purified antibody fraction by enzyme-linked immunosorbent assay (ELISA) and western blot showed that the antibody was fully active and free of degraded variants or modified forms. The efficacy of the system was further demonstrated using additional proteins and enzymes of therapeutic importance, such as neuraminidase (NA) from influenza virus and human anti-HIV monoclonal antibody 2G12 (mAb 2G12), and showed that the system may find wide applicability as an economic extraction strategy for the initial fractionation of biopharmaceuticals from transgenic tobacco plants.  相似文献   

18.
The current study explores the possibility of using a polyethyleneglycol(PEG)-ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400 and 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20% (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16%, w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35%, w/w PEG 600, 6%, w/w NH4)2 SO4), it was possible to recover 100% of pDNA in the bottom phase with a three-fold increase in concentration. Further increase in the lysate load up to 40% (w/w) with this system resulted in a eight-fold increase in pDNA concentration, but with a yield loss of 15%. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with iso-propanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.  相似文献   

19.
Aqueous-aqueous two-phase (AATP) systems composed of polyethylene glycol (PEG) (molecular mass, M(r):1000-8000) and dextran (M(r):40,000) were evaluated for purification of maltose binding protein tagged-histone deacetylase (MBP-HDAC) by counter-current chromatography (CCC). CCC purification of an MBP-HDAC from Escherichia coli cell-lysate was successfully demonstrated with a 7.0% PEG 3350-10% dextran T40 system containing 10 mM potassium phosphate buffer at pH 9.0. After CCC purification, both polymers in the CCC fractions were easily removed by ultrafiltration in a short period of time. The collected fractions containing target protein were analyzed by an HPLC-based in vitro assay as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis. MBP tag was digested from fusion HDAC during the CCC separation and native HDAC was purified by one-step operation with well preserved deacetyl enzyme activity.  相似文献   

20.
《Fluid Phase Equilibria》1999,154(1):109-122
The modified NRTL model proposed in the previous paper [Y.-T., Wu, D.-Q. Lin, Z.-Q. Zhu, L.-H. Mei, Fluid Phase Equilibria 124 (1996) 67–79.] is further extended to include the effect of partial dissociation of salts in polyethylene glycol (PEG)–salt aqueous two-phase systems (ATPS), and is used to calculate the liquid–liquid equilibrium phase diagrams such as PEG–(NH4)2SO4 and PEG–MgSO4 ATPS. The phase diagrams of PEG–uni-bivalent salt ATPS can be correctly represented in the cases of both complete dissociation and partial dissociation of the salt, while those of PEG–MgSO4 ATPS can only be described in the case of partial dissociation of the salt. The analysis shows that the salts may have different existing states in the ATPS. The effect of partial dissociation of the salts on the phase diagrams should be considered, especially for systems such as PEG–MgSO4 ATPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号