首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method for the quantitative extraction and separation of trace amounts of rhodium from nitric acid and sodium trichloroacetate media has been established based on the formation of an ion-association complex of hexahydrated rhodium cation Rh(H2O)6 3+ and the trichloroacetate (TCA) anion in tri-n-butyl phosphate (TBP). The effect of various factors (solvent, pH, sodium trichloroacetate, shaking time, phase volume ratio, composition of the extracted species, foreign ions, transformation of rhodium chlorocomplexes into hexahydrated cation, etc.) on the extraction and back-extraction of rhodium has been investigated. The method can be combined with subsequent FAAS determination of rhodium. The procedure was applied to determine rhodium traces in chloroplatinic acid and palladium chloride. Received: 17 March 2000 / Revised: 15 May 2000 / Accepted: 19 May 2000  相似文献   

2.
Compounds of the late transition metals with M?X multiple bonds (X=CR2, NR, O) represent a synthetic challenge, partly overcome by preparative chemists, but with noticeable gaps in the second‐ and third‐row elements. For example, there are no isolated examples of terminal imido rhodium complexes known to date. Described herein is the isolation, characterization, and some preliminary reactivity studies of the first rhodium complexes [Rh(PhBP3)(NR)] (PhBP3=PhB{CH2PPh2}3) with a multiple and terminal Rh?N bond. These imido compounds result from reactions of organic azides with the corresponding rhodium(I) complex having a labile ligand, and display a pseudo‐tetrahedral core geometry with an almost linear Rh‐N‐C arrangement [177.5(2)°] and a short Rh? N bond [1.780(2) Å]. We also show that the Rh?N bond undergoes protonation at the nitrogen atom or addition of H2, and also engages in nitrene‐group transfer and cycloaddition reactions.  相似文献   

3.
The use of cyclopentadienyl ligands in organometallic chemistry and catalysis is ubiquitous, mostly due to their robust spectator role. Nonetheless, increasing examples of non-innocent behaviour are being documented. Here, we provide evidence for reversible intramolecular C−H activation at one methyl terminus of C5Me5 in [(η-C5Me5)Rh(PMe3)2] to form a new Rh−H bond, a process so far restricted to early transition metals. Experimental evidence was acquired from bimetallic rhodium/gold structures in which the gold center binds either to the rhodium atom or to the activated Cp* ring. Reversibility of the C−H activation event regenerates the RhI and AuI monometallic precursors, whose cooperative reactivity towards polar E−H bonds (E=O, N), including the N−H bonds in ammonia, can be understood in terms of bimetallic frustration.  相似文献   

4.
Mesoporous precious metals with abundant active sites and high surface area have been widely recognized as high‐performance catalytic materials. However, the templated synthesis is complex and costly. Herein, we report a mesoporous rhodium (m‐Rh) that can be readily synthesized from entangled nanofibres of Rh and Y2O3 without templates. The entangled nanofibres, prepared from uniform Rh‐Y alloys under redox atmosphere, were the key precursor in the synthesis processes. Moreover, the m‐Rh efficiently catalyzed carbon dioxide reforming of methane (DRM) at a low reaction temperature of 683 K. Further, electrochemical methods of CO electro‐oxidation were innovatively used to demonstrate the stability of CO and oxygen species for the DRM reaction.  相似文献   

5.
The analytical performance of electrodeposited noble metals (Pd, Rh or Pd+Rh) on the graphite surface for cadmium determination in the presence of inorganic acids was evaluated and discussed. The study was carried out for 16% HNO3, 28% HCl and a mixture of both acids (aqua regia). It was demonstrated that all electrodeposited modifiers stabilized cadmium up to 800°C in the presence of HNO3 and aqua regia. When only HCl was present in the solution the thermal stability of cadmium was less pronounced, the maximum pyrolysis temperature that could be applied was 500°C. The long-term study for Cd determination shows that permanent performance of electrodeposited modifiers is not influenced by mineral acids, moreover, the tube lifetime was doubled, compared with a non-modified tube, when Pd+Rh were electrodeposited onto the graphite surface.  相似文献   

6.
Oxidation of rhodium(I) carbonyl chloride, [Rh(CO)2Cl]2, with copper(II) acetate or isobutyrate in methanol solutions yields binuclear double carboxylato bridged rhodium(II) complexes with RhRh bonds, [Rh(μ-OOCRκO)(COOMeκC)(CO)(MeOH)]2, where R=CH3 or i-C3H7. According to X-ray data, surrounding of each rhodium atom in these complexes is close to octahedral and consists of another rhodium atom, two oxygens of carboxylato ligands, terminal carbonyl group, C-bonded methoxycarbonyl ligand, and axial CH3OH. Methoxycarbonyl ligand is shown to originate from CO group of the parent [Rh(CO)2Cl]2 and OCH3 group of solvent. N- and P-donor ligands L (p-CH3C6H4NH2, P(OPh)3, PPh3, PCy3) readily replace the axial MeOH yielding [Rh(μ-OOCRκO)(COOMeκC)(CO)(L)]2. The X-ray data for the complex with R=i-C3H7, L=PPh3 showed the same molecular outline as with L=MeOH. Electronic effects of axial ligands L on the spectral parameters of terminal carbonyl group are essentially the same as in the known series of rhodium(I) complexes (an increase of δ13C and a decrease of ν(CO) with strengthening of σ-donor and weakening of π-acceptor ability of L).  相似文献   

7.
Both single stage and multi-stages experiments on stripping plutonium with N,N-dimethylhydroxylamine (DMHAN) as reductant with methylhydrozine (MMH) as supporting reductant were carried out. The effect of contact time, temperature, acidity, concentration of DMHAN on back-extraction rate of plutonium was investigated in the single stage experiment. The results demonstrated that the reaction of stripping Pu(IV) in the organic phase (30% TBP–kerosene) 1BF solutions by DMHAN exhibits excellent stripping efficiency. Under the given conditions, the back-extraction rate of plutonium reaches 90% within 2 min. Higher temperature, lower acidity and the increased concentration of DMHAN benifit the stripping reaction. The concentration profile of HNO3, uranium and plutonium were determined in a multi-stages mixer-settler after the steady state of the back-extraction, and the multi-stages results show that the plutonium can be separated effectively from uranium. The recovery of plutonium and uranium reach 99.995% or over 99.99% respectively. The separation factor of U from Pu (SFPu/U) is about 2 × 104.  相似文献   

8.
The effects of the addition of ceria and zirconia on the structural properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ‐Al2O3) are studied. Ceria and zirconia are deposited by using two preparation methods. Method I involves the deposition of ceria on γ‐Al2O3 from Ce(acac)3, and the rhodium metal is subsequently added, whereas method II is based on a controlled surface reaction technique, that is, the decomposition of metal–organic M(acac)x (in which M=Ce, x=3 and M=Zr, x=4) on Rh/γ‐Al2O3. The structures of the prepared catalyst materials are characterized ex situ by using N2 physisorption, transmission electron microscopy, high‐angle annular dark‐field scanning transmission election microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy (XPS), and X‐ray absorption fine structure spectroscopy (XAFS). All supported rhodium systems readily oxidize in air at room temperature. By using ceriated and zirconiated precursors, a larger rhodium‐based metallic core fraction is obtained in comparison to the undoped rhodium catalysts, suggesting that ceria and zirconia protect the rhodium particles against extensive oxidation. XPS results indicate that after the calcination and reduction treatments, a small amount of chlorine is retained on the support of all rhodium catalysts. EXAFS analysis shows significant Rh? Cl interactions for Rh/Al2O3 and Rh/CeOx/Al2O3 (method I) catalysts. After reaction with H2/He in situ, for series of samples with 1.6 wt % Rh, the EXAFS first shell analysis affords a mean size of approximately 30 atoms. A broader spread is evident with a 4 wt % rhodium loading (ca. 30–110 atoms), with the incorporation of zirconium providing the largest particle sizes.  相似文献   

9.
Stepwise introduction of the potential tripod ligands tris(3,5‐dimethyl‐1‐pyrazolyl)borate (Tp*) and tris(1‐cyclohepta‐2,4,6‐trienyl)phosphane into the coordination sphere of rhodium(I) leads mainly to [Tp*Rh{P(C7H7)3}] ( 4 ), in which Tp* is linked to the rhodium through a single pyrazolyl group and a non‐linear B–H–Rh bridge. This is the novel, now firmly established coordination mode κ2(N,B–H). The phosphane ligand is coordinated through one Rh–P and two Rh‐olefin bonds. Important structural features determined for the crystalline state of 4 are retained in solution, as shown by the 1H, 11B, 13C, 31P and 103Rh NMR spectra.  相似文献   

10.
Recently described and fully characterized trinuclear rhodium‐hydride complexes [{Rh(PP*)H}32‐H)33‐H)][anion]2 have been investigated with respect to their formation and role under the conditions of asymmetric hydrogenation. Catalyst–substrate complexes with mac (methyl (Z)‐ N‐acetylaminocinnamate) ([Rh(tBu‐BisP*)(mac)]BF4, [Rh(Tangphos)(mac)]BF4, [Rh(Me‐BPE)(mac)]BF4, [Rh(DCPE)(mac)]BF4, [Rh(DCPB)(mac)]BF4), as well as rhodium‐hydride species, both mono‐([Rh(Tangphos)‐ H2(MeOH)2]BF4, [Rh(Me‐BPE)H2(MeOH)2]BF4), and dinuclear ([{Rh(DCPE)H}22‐H)3]BF4, [{Rh(DCPB)H}22‐H)3]BF4), are described. A plausible reaction sequence for the formation of the trinuclear rhodium‐hydride complexes is discussed. Evidence is provided that the presence of multinuclear rhodium‐hydride complexes should be taken into account when discussing the mechanism of rhodium‐promoted asymmetric hydrogenation.  相似文献   

11.
The manifold enhancement of the rhodium extraction efficiency from nitric acid solutions of triaquatrinitrorhodium is discovered with the use of two-component mixed extractants based on alkylaniline (AA), dihexyl sulfide (DHS), dihexyl sulfoxide (DHSO), tributyl phosphate (TBP), and oxime ACORGA P5100. A mixture of unimolar solutions of alkylanilinium nitrate and DHS is found to be the most efficient extractant: at 35°C, this mixture quantitatively extracts rhodium within 5 min from aqueous solutions containing 0.06 to 3 mol/L HNO3. The extraction kinetics are studied. The following two-stage extraction mechanism is substantiated: the equilibrium of formation of a colloidal-chemical intermediate involving [Rh(H2O)3(NO2)3], HNO3, and (BHNO3)p (an associated form of the alkylanilinium salt) and the reaction of the intermediate with DHS (the rate-controlling stage).  相似文献   

12.
The reaction of CO oxidation on thin metal films of platinum, rhodium, and their alloy and on a heterophase bimetallic Pt/Rh surface that consisted of platinum particles of size 10–20 nm on the surface of rhodium was studied in the region of low reactant pressures (lower than 2 × 10?5 mbar). At low temperatures (T < 200°C), the activity of samples increased in the order Rh > Pt/Rh > Pt-Rh alloy > Pt. Above 200°C, the rate of reaction on the heterophase Pt/Rh surface was almost twice as high as the sum of the rates of reaction on the individual metals; this fact is indicative of a synergistic effect. The nature of this effect is considered.  相似文献   

13.
The rhodium(I) complex [Rh(CO)(PEt3)(mnt)]? (mnt = maleonitriledithiolate) reacts with a variety of alkyl halides to form acyl complexes isolated in the presence of excess PEt3 as five-coordinate species of formula [Rh(COR)(PEt3)2(mnt)]. The structure of the complex for R = n-Pr has been determined by an X-ray analysis, and is found to be a square-based pyramid with the acyl group in the apical position. Addition of HClO4 to the rhodium(I) anion in the presence of excess PEt3 yields rhodium(III) hydride, [RhH(CO)(PEt3)2(mnt)], while addition of acid to the rhodium(I) complex in CH3CN solution with ethylene present leads slowly to formation of an acyl complex which is isolated as [Rh(COEt)(PEt3)2(mnt)] upon phosphine addition. A novel alkyl group migration from the acyl carbon to a donor S atom is also observed in monophosphine systems.  相似文献   

14.
The 16-electron fragment (NP3)Rh+ inserts in a highly stereospecific manner across CH bonds from acetylene and 1-alkynes to give the octahedral cis-(alkynyl)hydrides [(NP3)Rh(H)(CCR)]BPh4 (R = H, Ph, COOEt). The structure of the cis-(ethynyl)hydride [(NP3)Rh(H)(CCH)]BPh4 · 1.5 THF has been established by X-ray diffraction. The trigonal bipyramidal rhodium(I) complex [(NP3)RhH], reacts with terminal alkynes to give H2 and the neutral σ-acetylides [(NP3)Rh(CCR)] (R = Ph, COOEt). These undergo metathesis between terminal alkynes and the σ-acetylide ligand through a mechanism involving consecutive breaking and making of CH bonds.  相似文献   

15.
We studied nonequilibrium distribution of inert rhodium(III) in extraction by dihexyl sulfide (DHS)and alkylanilinium nitrate mixtures from joint nitrate solutions of triaquatrinitrorhodium (0.1–4 g/L Rh) and palladium (0–2 g/L Pd). We discovered the effect of increasing rhodium recovery in the presence of palladium. This effect has a kinetic nature and arises from the fact that bis(alkyl sulfide) palladium(II) species catalyze the reaction between dihexyl sulfide and a rhodium intermediate based on alkylanilinium nitrate micelles. Depending on initial rhodium and palladium concentrations, the extraction system provides effective distribution factors for rhodium in the range D Rh* = 8−300 and rhodium recoveries of 43–97% with ∼100% palladium recovery; single 5-min phase contact at 35°C ensures the 10-fold concentration of both metals in the extract. Our results are useful for developing processes for recovering fission rhodium from spent nuclear fuel. Original Russian Text ? V.V. Tatarchuk, I.A. Druzhinina, T.M. Korda, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 8, pp. 1401–1407.  相似文献   

16.
The effects of ceria and zirconia on the structure–function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ‐Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ‐Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ‐Al2O3. The structure–function correlations of ceria and/or zirconia‐doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier‐transform spectroscopy/energy‐dispersive extended X‐ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time‐resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ‐Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase.  相似文献   

17.
Solvent extraction of rhodium, ruthenium and iridium with di(2-ethylhexyl)phosphoric acid (HDEHP) has been investigated. Under the conditions [Cl–1]=0.20M, [(HDEHP)2]=0.30M, pH 4.05, phase contact time 1 minutes, Rh(III) is extracted 90.7%, Ru(III) and Ir(III) 20.0% and 11.5%, respectively, at phase ratio 11. The distribution ratio of rhodium is proportional to [(HDEHP)2]3 for a freshly prepared aqueous phase with low chloride concentration but might drop to [(HDEHP)2]1to2 for an aqueous phase high in chloride concentration and after standing. The spectroscopic studies indicate that the extracted compound of rhodium is Rh(H2O)6–x Cl x [H(DEHP)2]3–x (x=0, 1, 2).  相似文献   

18.
Diene rhodium complexes are important catalysts in modern organic synthesis. Herein, we report a new approach to such complexes with the uncommon planar chirality. The synthesis is achieved by face-selective coordination of the prochiral 2,5-disubstituted-1,4-benzoquinones (R2-Q) with rhodium precursors containing the chiral auxiliary ligand S-salicyl-oxazoline (S-Salox). Such coordination leads to the formation of (R,R-R2-Q)Rh(S-Salox) complexes in high yields and with exceptional diastereoselectivity (d. r.>20 : 1). Subsequent replacement of the auxiliary ligand provides various benzoquinone rhodium complexes with retention of the planar chirality. Combined theoretical and experimental studies show that due to their electron-withdrawing nature benzoquinones bind metals stronger than the related 1,4-cyclohexadiene, but weaker than other common diene ligands, such as cyclooctadiene.  相似文献   

19.
A comparison was made for extraction systems based on the mixtures of calix[n]arenes phosphorylated at the upper and lower rims (PCA, n = 4 and 6) with dioctyl sulfide (DOS) for recovery of rhodium in the form of [Rh(H2O)3(NO2)3]0 from acid nitrate-nitrite media. Because of inertness of rhodium compounds, the main attention was devoted to extraction kinetics. The kinetic efficiency of DOS + PCA systems was found to be much higher than that for DOS alone, whereas the components of the mixtures do not extract rhodium. Alkyl(ethyl)calixphosphine oxides are the most promising, they behave as accelerating additives in extractant mixtures. Extraction kinetics of [Rh(H2O)3(NO2)3]0 species was studied and extraction systems were selected to develop method for the recovery of fission rhodium.  相似文献   

20.
The transition state for the oxidative addition reaction [Rh(acac)(P(OPh)3)2] + CH3I, as well as two simplified models viz. [Rh(acac)(P(OCH3)3)2] and [Rh(acac)(P(OH)3)2], are calculated with the density functional theory (DFT) at the PW91/TZP level of theory. The full experimental model, as well as the simplified model systems, gives a good account of the experimental Rh-ligand bond lengths of both the rhodium(I) and rhodium(III) β-diketonatobis(triphenylphosphite) complexes. The relative stability of the four possible rhodium(III) reaction products is the same for all the models, with trans-[Rh(acac)(P(OPh)3)2(CH3)(I)] (in agreement with experimental data) as the most stable reaction product. The best agreement between the theoretical and experimental activation parameters was obtained for the full experimental system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号