首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermoregulated phase‐transfer (TRPT) Rh(I) complex catalyst A prepared from Rh(acac)(CO)2 and a thermoregulated ligand CH3(OCH2CH2)mPPh2 (Mw = 918) was applied to the biphasic hydroformylation of 1‐octene, and a high activity with an aldehyde yield of 97.5% was demonstrated. After three recycling steps, the aldehyde yield gradually decreased. Transmission electron microscopy (TEM) revealed that after the first cycle Rh colloids were generated in situ in the aqueous phase, and in subsequent runs Ostwald ripening occurred. An independently prepared colloidal Rh(0) TRPT catalyst D also exhibited high hydroformylation activity under identical experimental conditions, and after two times of recycling an activity decrease was also observed. It is suggested that in situ from Rh(acac)(CO)2 colloidal Rh particles are generated, which demonstrate thermomorphic behaviour and a high hydroformylation activity. Subsequently, agglomeration processes result in an activity decay, as observed in the TRPT Rh(I) complex catalyst system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
New dinuclear Rh(I)–Phosphines of the types [Rh(µ‐azi)(CO)(L)]2 ( 1,3 – 7 ) and [Rh(µ‐azi)(L)]2 ( 8 ) with pendant polar groups, and a chealated mononuclear compound [Rh(azi‐H)(CO)(L)] ( 2 ) (where azi = 7‐azaindolate, L = polar phosphine) were isolated from the reaction of [Rh(µ‐Cl)(CO)2]2 with 7‐azaindolate followed by some polar mono‐ and bis‐phosphines ( L 1 – L 8 ). A relationship between Δδ31P‐NMR and ν(CO) values was considered to define the impact of polar‐groups on σ‐donor properties of the phosphines. These compounds were evaluated as catalyst precursors in the hydroformylation of 1‐hexene and 1‐dodecene both in mono‐ and biphasic aqueous organic systems. While the biphasic hydroformylations (water + toluene) gave exclusively the aldehydes, the monophasic one (aqueous ethanol) showed propensity to form both aldehydes and alcohols. The influence of bimetallic cooperative effects, and σ‐donor and hydrophilic properties of the phosphines with pendant polar‐groups in enhancing the yields and selectivity of hydroformylation products was emphasized. In addition, when strong σ‐donor phosphine was used, the π‐acceptor nature of pyridine ring of 7‐azaindolate spacer was found to be a considerable factor in facilitating the facile cleavage of CO group during hydroformylation and in supplementing the cooperative effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
We show for the first time that atomically dispersed Rh cations on ceria, prepared by a high‐temperature atom‐trapping synthesis, are the active species for the (CO+NO) reaction. This provides a direct link with the organometallic homogeneous RhI complexes capable of catalyzing the dry (CO+NO) reaction. The thermally stable Rh cations in 0.1 wt % Rh1/CeO2 achieve full NO conversion with a turn‐over‐frequency (TOF) of around 330 h?1 per Rh atom at 120 °C. Under dry conditions, the main product above 100 °C is N2 with N2O being the minor product. The presence of water promotes low‐temperature activity of 0.1 wt % Rh1/CeO2. In the wet stream, ammonia and nitrogen are the main products above 120 °C. The uniformity of Rh ions on the support, allows us to detect the intermediates of (CO+NO) reaction via IR measurements on Rh cations on zeolite and ceria. We also show that NH3 formation correlates with the water gas shift (WGS) activity of the material and detect the formation of Rh hydride species spectroscopically.  相似文献   

4.
The reactivity of [Rh(CO)2{(R,R)‐Ph? BPE}]BF4 ( 2 ) toward amine, CO and/or H2 was examined by high‐pressure NMR and IR spectroscopy. The two cationic pentacoordinated species [Rh(CO)3{(R,R)‐Ph? BPE}]BF4 ( 4 ) and [Rh(CO)2(NHC5H10){(R,R)‐Ph‐BPE}]BF4 ( 8 ) were identified. The transformation of 2 into the neutral complex [RhH(CO)2{(R,R)‐Ph? BPE}] ( 3 ) under hydroaminomethylation conditions (CO/H2, amine) was investigated. The full mechanisms related to the formation of 3 , 4 and 8 starting from 2 are supported by DFT calculations. In particular, the pathway from 2 to 3 revealed the deprotonation by the amine of the dihydride species [Rh(H)2(CO)2{(R,R)‐Ph? BPE}]BF4 ( 6 ), resulting from the oxidative addition of H2 on 2 .  相似文献   

5.
The molecule of the title complex, [Rh(5‐NO2trop)(C18H15P)(CO)] (5‐­NO2trop is 2‐hydroxy‐5‐nitrocyclo­hepta‐2,4,6‐trienone, C7H4NO4), has a distorted square‐planar geometry. Strong intramolecular and weak intermolecular hydrogen bonding is observed, with H⋯O distances of the order of 2.25 and 2.55 Å, respectively. The Rh—CO, Rh—O (trans to CO), Rh—O (trans to P) and Rh—P bond distances are 1.775 (7), 2.072 (4), 2.068 (4) and 2.2397 (17) Å, respectively, the O—Rh—O angle is 77.09 (16)° and the bidentate O—C—C—O torsion angle is 1.5 (7)°.  相似文献   

6.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

7.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

8.
[{Rh(μ‐Cl)(H)2(IPr)}2] (IPr = 1,3‐bis‐(2,6‐diisopropylphenyl)imidazole‐2‐ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one‐pot three‐component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(μ‐Cl)(H)2(IPr)}2] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2)] (MesNH2 = 2,4,6‐trimethylaniline) and [RhCl(CO)2IPr]. The latter shows a very low catalytic activity while the former brought about reaction rates similar to those obtained with [{Rh(μ‐Cl)(H)2(IPr)}2]. Besides, complex [RhCl(CO)IPr(MesNH2)] reacts with an excess of amine and aldehyde to give [RhCl(CO)IPr{MesN?CHCH2CH(CH3)2}], which was postulated as the active species. A mechanism that clarifies the scarcely studied catalytic cycle of A3‐coupling reactions is proposed based on reactivity studies and DFT calculations.  相似文献   

9.
The effects of ceria and zirconia on the structure–function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ‐Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ‐Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ‐Al2O3. The structure–function correlations of ceria and/or zirconia‐doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier‐transform spectroscopy/energy‐dispersive extended X‐ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time‐resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ‐Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase.  相似文献   

10.
Permutational isomers of trigonal bipyramidal [W2RhIr2(CO)9(η5‐C5H5)2(η5‐C5HMe4)] result from competitive capping of either a W2Ir or a WIr2 face of the tetrahedral cluster [W2Ir2(CO)10(η5‐C5H5)2] from its reaction with [Rh(CO)25‐C5HMe4)]. The permutational isomers slowly interconvert in solution by a cluster metal vertex exchange that is proposed to proceed by Rh?Ir and Rh?W bond cleavage and reformation, and via the intermediacy of an edge‐bridged tetrahedral transition state. The permutational isomers display differing chemical and physical properties: replacement of CO by PPh3 occurs at one permutational isomer only, while the isomers display distinct optical power limiting behavior.  相似文献   

11.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

12.
The title compound, dicarbonyl‐1κ2C‐di‐μ‐chloro‐1:2κ4Cl‐[cis,cis‐2(η4)‐1,5‐cyclo­octa­diene]­di­rhodium(I), [Rh2Cl2(C8H12)(CO)2], consists of a di­chloro‐bridged dimer of rhodium, with a non‐bonded Rh?Rh distance of 3.284 (2) Å. One Rh atom is coordinated to two carbonyl ligands, while the other Rh atom is coordinated to the cyclo­octa­diene moiety.  相似文献   

13.
Rhenium Dicarbonyl‐Nitrosyl Complexes with Imidazole Different rhenium‐dicarbonyl‐nitrosyl complexes with imidazole (Im) as monodentate ligand have been synthesized and characterized, starting from [NEt4][ReCl3(CO)2(NO)] and [ReCl(μ?Cl)(CO)2(NO)]2. Whereas the complexes [ReCl2(Im)(CO)2(NO)] and [ReCl(Im)2(CO)2(NO)]+ were achieved in high yields, the complex [Re(Im)3(CO)2(NO)]2+ with three imidazole ligands could only be isolated after complete removal of all halide ions (with AgBF4) in low yield. The synthesis of a corresponding 99mTc‐dicarbonyl‐nitrosyl complex with imidazole opens a new perspective for such compounds as potential radiopharmaceuticals and alternatives to the already established 99mTc‐tricarbonyl complexes.  相似文献   

14.
Triply‐bridging bis‐{hydrido(borylene)} and bis‐borylene species of groups 6, 8 and 9 transition metals are reported. Mild thermolysis of [Fe2(CO)9] with an in situ produced intermediate, generated from the low‐temperature reaction of [Cp*WCl4] (Cp*=η5‐C5Me5) and [LiBH4?THF] afforded triply‐bridging bis‐{hydrido(borylene)}, [(μ3‐BH)2H2{Cp*W(CO)2}2{Fe(CO)2}] ( 1 ) and bis‐borylene, [(μ3‐BH)2{Cp*W(CO)2}2{Fe(CO)3}] ( 2 ). The chemical bonding analyses of 1 show that the B?H interactions in bis‐{hydrido (borylene)} species is stronger as compared to the M?H ones. Frontier molecular orbital analysis shows a significantly larger energy gap between the HOMO‐LUMO for 2 as compared to 1 . In an attempt to synthesize the ruthenium analogue of 1 , a similar reaction has been performed with [Ru3(CO)12]. Although we failed to get the bis‐{hydrido(borylene)} species, the reaction afforded triply‐bridging bis‐borylene species [(μ3‐BH)2{WCp*(CO)2}2{Ru(CO)3}] ( 2′ ), an analogue of 2 . In search for the isolation of bridging bis‐borylene species of Rh, we have treated [Co2(CO)8] with nido‐[(RhCp*)2(B3H7)], which afforded triply‐bridging bis‐borylene species [(μ3‐BH)2(RhCp*)2Co2(CO)4(μ‐CO)] ( 3 ). All the compounds have been characterized by means of single‐crystal X‐ray diffraction study; 1H, 11B, 13C NMR spectroscopy; IR spectroscopy and mass spectrometry.  相似文献   

15.
A series of related acetylacetonate–carbonyl–rhodium compounds substituted by functionalized phosphines has been prepared in good to excellent yields by the reaction of [Rh(acac)(CO)2] (acac is acetylacetonate) with the corresponding allyl‐, cyanomethyl‐ or cyanoethyl‐substituted phosphines. All compounds were fully characterized by 31P, 1H, 13C NMR and IR spectroscopy. The X‐ray structures of (acetylacetonato‐κ2O,O′)(tert‐butylphosphanedicarbonitrile‐κP)carbonylrhodium(I), [Rh(C5H7O2)(CO)(C8H13N2)] or [Rh(acac)(CO)(tBuP(CH2CN)2}] ( 2b ), (acetylacetonato‐κ2O,O′)carbonyl[3‐(diphenylphosphanyl)propanenitrile‐κP]rhodium(I), [Rh(C5H7O2)(C15H14N)(CO)] or [Rh(acac)(CO){Ph2P(CH2CH2CN)}] ( 2h ), and (acetylacetonato‐κ2O,O′)carbonyl[3‐(di‐tert‐butylphosphanyl)propanenitrile‐κP]rhodium(I), [Rh(C5H7O2)(C11H22N)(CO)] or [Rh(acac)(CO){tBu2P(CH2CH2CN)}] ( 2i ), showed a square‐planar geometry around the Rh atom with a significant trans influence over the acetylacetonate moiety, evidenced by long Rh—O bond lengths as expected for poor π‐acceptor phosphines. The Rh—P distances displayed an inverse linear dependence with the coupling constants JP‐Rh and the IR ν(C[triple‐bond]O) bands, which accounts for the Rh—P electronic bonding feature (poor π‐acceptors) of these complexes. A combined study from density functional theory (DFT) calculations and an evaluation of the intramolecular H…Rh contacts from X‐ray diffraction data allowed a comparison of the conformational preferences of these complexes in the solid state versus the isolated compounds in the gas phase. For 2b , 2h and 2i , an energy‐framework study evidenced that the crystal structures are mainly governed by dispersive energy. In fact, strong pairwise molecular dispersive interactions are responsible for the columnar arrangement observed in these complexes. A Hirshfeld surface analysis employing three‐dimensional molecular surface contours and two‐dimensional fingerprint plots indicated that the structures are stabilized by H…H, C…H, H…O, H…N and H…Rh intermolecular interactions.  相似文献   

16.
Several metal complexes with a boron dipyrromethene (BODIPY)‐functionalized N‐heterocyclic carbene (NHC) ligand 4 were synthesized. The fluorescence in [( 4 )(SIMes)RuCl2(ind)] complex is quenched (Φ=0.003), it is weak in [( 4 )PdI2(Clpy)] (Φ=0.033), and strong in [( 4 )AuI] (Φ=0.70). The BODIPY‐tagged complexes can experience pronounced changes in the brightness of the fluorophore upon ligand‐exchange and ligand‐dissociation reactions. Complexes [( 4 )MX(1,5‐cyclooctadiene)] (M=Rh, Ir; X=Cl, I; Φ=0.008–0.016) are converted into strongly fluorescent complexes [( 4 )MX(CO)2] (Φ=0.53–0.70) upon reaction with carbon monoxide. The unquenching of the Rh and Ir complexes appears to be a consequence of the decreased electron density at Rh or Ir in the carbonyl complexes. In contrast, the substitution of an iodo ligand in [( 4 )AuI] by an electron‐rich thiolate decreases the brightness of the BODIPY fluorophore, rendering the BODIPY as a highly sensitive probe for changes in the coordination sphere of the transition metal.  相似文献   

17.
Deprotonation of the readily available organometallic aldehyde derivative [(η4‐C7H7CHO)Fe(CO)3] ( 2 ) with NaN(SiMe3)2 in benzene solution at ambient temperature afforded the anionic formylcycloheptatrienyl complex Na[(η3‐C7H6CHO)Fe(CO)3] ( 3 ). The anion is fluxional in solution and displays a unique ambident reactivity towards electrophiles (MeI, Me3SiCl). New substituted [(η4‐RC7H6CHO)Fe(CO)3] and [(η4‐heptafulvene)Fe(CO)3] complexes have been identified as the products. Treatment of 3 with 0.5 equivalents of dimeric [(COD)RhCl]2 (COD = 1,5‐cyclooctadiene) afforded the functionalized Fe‐Rh cycloheptatrienyl complex [(μ‐C7H6CHO)(CO)3FeRh(COD)] ( 7 ) in up to 86 % yield. Carbonylation of 7 under an atmosphere of CO led to facile conversion to the heterobimetallic pentacarbonyl derivative [(μ‐C7H6CHO)(CO)3FeRh(CO)2] ( 8 ), which is also accessible in lower yield from the direct reaction of 3 with [Rh(CO)2Cl]2.  相似文献   

18.
Nitrogen‐doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N‐doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface‐bonded N species, whereas the core remains N doped. N‐Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible‐light irradiation. The surface‐oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N‐doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N‐doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible‐light‐driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N‐doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N‐doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.  相似文献   

19.
The synthesis, reactivity, and properties of boryl‐functionalized σ‐alkynyl and vinylidene rhodium complexes such as trans‐[RhCl(?C?CHBMes2)(PiPr3)2] and trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] are reported. An equilibrium was found to exist between rhodium vinylidene complexes and the corresponding hydrido σ‐alkynyl complexes in solution. The complex trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] (IMe=1,3‐dimethylimidazol‐2‐ylidene) was found to exhibit solvatochromism and can be quasireversibly oxidized and reduced electrochemically. Density functional calculations were performed to determine the reaction mechanism and to help rationalize the photophysical properties of trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2].  相似文献   

20.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号