首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
《Composite Interfaces》2013,20(5):465-475
The oligomer of bis-phenol A (oligo-PC) with M w = 1300 and bis-phenol A polycar-bonate (PC) with M w = 20 000 were deposited onto E-glass surface using SiCl4 as the grafting and cross-linking agent. Thickness of the deposited layers was varied from 30 to 106 nm and the layers were investigated as prepared and after thermal annealing at 245°C for 10 min in the air. Vibrational piezoelectric resonator technique and the speed of Rayleigh wave measurement were used to determine elastic moduli of the ultra thin layers deposited on flat E-glass substrate as a function of their thickness. In all cases, increase of the Young modulus of the interphase, E i, with decreasing layer thickness, t i, was observed. At a given thickness, the E i of PC layer was significantly lower than that for the oligo-PC layer. Thermal annealing of the deposited PC layer resulted in a significant increase of its E i compared to the as received layer. No significant change was observed for oligo-PC interphases. Increase of the shear strength of the interface, τ a, with reducing interphase thickness, t i, was observed. The observed increase of E i with the decreasing t i was ascribed to the reduction of the molecular mobility of chains near solid surface compared to their mobility in the bulk. Most probably, the observed increase of E i after thermal annealing of PC was caused by rearrangement of both segment density distribution in individual PC coils near the solid surface and cooperative rearrangements of multiple PC chains. Since the oligomers attached to the surface attained presumably more regular extended conformations with lower conformation entropy compared to the PC random coils, the effect of thermal annealing was negligible. In agreement with theoretical predictions, increase of E i at the same extent of interfacial interactions resulted in the observed increase of the τ a measured using the single embedded fiber test.  相似文献   

2.
Phosphorus-containing montmorillonite (P-MMT) was successfully prepared via intercalating resorcinol bis(diphenyl phosphate) (RDP) into montmorillonite (MMT) layers, and was utilized as a synergistic agent in the polypropylene/melamine pyrophosphate/pentaerythritol (PP/MPP/PER) intumescent flame retardant (IFR) system. The synergistic effect of P-MMT and IFR was investigated by dynamic mechanical analysis (DMA), thermogravimetry (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), and scanning electron microscopy (SEM). It was found that P-MMT could significantly improve the thermostability and flame retardancy of the PP/IFR composite. When 2.0 wt% P-MMT replaced the same amount of IFR in the composite, both the onset decomposition temperature (T onset) and the maximum-rate decomposition temperature (T max) of the PP/IFR composite were increased by more than 14°C. Meanwhile, the LOI value was increased from 29.5% to 32.5%, the UL-94 rating was enhanced from V-1 to V-0, and the heat release rate (HRR), total heat release (THR), and mass lose rate (MLR) were decreased dramatically, which proved that P-MMT had a good synergistic effect with IFR in flame retardant PP.  相似文献   

3.
Phosphorus flame retardants, bis(2,6-dimethylphenyl) phenyl phosphonate (BDMPP) and poly(bisphenol S phenyl phosphonate) (PBSPP), were synthesized and their structures were characterized with Fourier transform infrared spectroscopy, and 1H and 31P nuclear magnetic resonance. The phosphorus compounds were used to impart flame retardancy to polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS). Combustion behaviors and thermal degradation properties of the systems were assayed by limiting oxygen index (LOI), vertical burning test (UL-94), and thermogravimetric analysis. PC/7 wt.% BDMPP and PC/5 wt.% PBSPP pass UL-94 V-0 rating; their LOI values were 32.7% and 33.6% respectively. ABS/35 wt.% BDMPP and ABS/30 wt.% PBSPP also pass the UL-94 V-0 rating and their LOI values were 28.9% and 28.3% respectively. Scanning electron microscopy revealed that the char properties had direct effects on flame retardancy.  相似文献   

4.
《Composite Interfaces》2013,20(3):179-189
Thermal properties and degradation of polyethylene LDPE (nano)composites were investigated by isoconversional thermogravimetric analysis in air and nitrogen atmosphere by applying the Kissinger–Akahira–Sunose method. Low-density polyethylene (LDPE) composites containing 3 wt.% nanofiller Cloisite 20A and 4, 6, and 8 wt.% of natural zeolite were prepared using extrusion/injection moulding. The parameters of thermal stability of the samples were determined i.e. onset temperature of the degradation (T90), which exhibit initial mass loss (10 mass %) and maximum loss rate temperature (Tmax). Also, activation energy (Ea) of samples was calculated and interpreted in terms of thermal degradation mechanisms. Under nitrogen, the thermal degradation of LDPE (nano)composites follows a random scission pathway but it was retarded and slowed by the presence of the fillers. The results show that thermo-oxidative degradation of studied (nano)composites is induced at lower temperatures and appears as much more complex and multi-stage process.  相似文献   

5.
In this work, a polypropylene (PP)/attapulgite nanocomposite was prepared via melt blending using a novel organically modified attapulgite (OATP). The thermal stability of PP/clay nanocomposites compared to pure PP was examined in nitrogen using a kinetic analysis. The kinetic parameters, including reaction order and activation energy (A and E a) of the degradation process were determined by applying the Flynn‐Wall‐Ozawa method using derivative thermogravimetric (DTG) curves. At the same time, the effect of organic attapulgite on thermal decomposition of polypropylene matrix was analyzed. As a result, PP/OATP nanocomposites have slightly higher degradation temperature than that of the pure PP. The values of the reaction order of PP and PP/OATP nanocomposites are close to 1 in the nonisothermal degradation process. The activation energies of PP/OATP nanocomposites also increase slightly compared to the pure PP, thus it is suggested that the org‐attapulgite has little effect on the thermal stability of the pure PP.  相似文献   

6.
A novel flame retardant (NSiB) containing nitrogen, silicon and boron was synthesized through reacting of N-(β-aminoethyl)-γ-aminopropyl trimethoxy-silane (KH-792) and boric acid. The structure of NSiB was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS). The effects of NSiB on the flame retardancy and thermal behaviors of polypropylene (PP)/polyethylene vinyl acetate (EVA) blends were investigated by limiting oxygen index value (LOI), vertical burning tests (UL-94) and thermal gravimetric analysis tests (TGA). The results showed that the flame retardancy and thermal stability of PP/EVA blends were improved with the addition of NSiB. When 7.5 wt% DOPO (phosphaphenanthrene) and 0.5 wt% NSiB were incorporated, the LOI value of the PP/EVA blends was 26.9%, and the class V-0 of UL-94 test was passed, as compared to the LOI value of 22.4% and class V-2 of UL-94 test for 8.0 wt% DOPO only and 16.7% and fail, respectively, for the PP/EVA blends alone. The char structure observed by SEM indicated that the surface of the char for the PP/EVA/7.5 wt% DOPO/0.5 wt% NSiB blends had a denser and continuous char structure when compared with that of the PP/EVA blends and PP/EVA/8.0 wt% DOPO blends. These results indicated that there was a good synergistic effect for NSiB and DOPO.  相似文献   

7.
A novel polyhedral oligomeric silsesquioxane containing phosphorus and boron (PB-POSS) was synthesized. The resulting PB-POSS and multiwalled carbon nanotubes (MWCNTs) were incorporated into an epoxy resin (EP) to prepare PB-POSS/MWCNTs/EP composites through a solution mixing method. The synergistic effect of MWCNTs and PB-POSS on the thermal and mechanical properties and the flame retardancy of these flame retardant composites were studied. The experimental results showed that the introduction of PB-POSS or MWCNTs further improved the LOI values of the epoxy resin, and the highest LOI value (32.8%) was obtained for the formulation containing 14.6 wt% PB-POSS and 0.4 wt% MWCNTs. In addition, the incorporation of both PB-POSS and MWCNTs significantly improved the thermal and mechanical properties of the composites. The mechanical properties of composites containing 14.7 wt% PB-POSS and 0.3 wt% MWCNTs reached the maximum. The impact strength and flexural strength increased by 42% and 7%, respectively, compared to the neat epoxy resin. Thus, a combination of PB-POSS and MWCNTs in the appropriate ratio could effectively enhance the thermal and mechanical properties and the flame retardancy of the epoxy resin matrix.  相似文献   

8.
The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.  相似文献   

9.
The flammability of room temperature vulcanized silicone rubber (RTVSR) composites filled with melamine phosphate (MP) as intumescent flame-retardant additives was characterized by limiting oxygen index (LOI), UL-94 test, and cone calorimeter. In addition, the thermal degradation of the composites was studied using thermogravimetric analysis (TGA). Furthermore, in order to relate to actual application requirements, the comprehensive performance of the RTVSR/MP composites was optimized by adding organic nano-montmorillonite (OMMT) as a partial substitute for the MP. The as-prepared intumescent flame-retardant RTVSR/MP/OMMT nanocomposites were characterized by LOI, UL-94 test, TGA, cone calorimetry, scanning electron microscopy (SEM), and mechanical tests. The residue morphology formed after the burning of the nanocomposites was analyzed by its SEM and digital photographs. The results showed that the flame-retardant nanocomposites filled with 10 phr OMMT and 35 phr MP displayed the best comprehensive performance in terms of the flame retardancy, mechanical properties, and heat stability at low cost. It is expected that the intumescent flame-retardant silicone rubber composites with simultaneously improved flame retardancy, thermal stability, and mechanical properties will meet more requirements of the increasingly complex applications.  相似文献   

10.
The coordination structure, flame retardancy, thermal stabilities, and degradation mechanism of zinc alginate films were studied by Fourier transform infrared spectroscopy (FTIR), limiting oxygen index (LOI), vertical burning (UL-94), and thermogravimetric analysis (TGA) tests. The FTIR results showed that the structure of zinc alginate was correlated to its bidentate bridging coordination. The LOI (49.3) and UL-94 (V-0 rating) results indicated that zinc alginate was an inherent flame retardant material. The TG results showed that zinc alginate had better thermal stabilities than sodium alginate in the lower temperature zones; however, the thermal stabilities of zinc alginate were worse than those of sodium alginate at higher temperatures because of the decomposition of zinc oxalate formed in the degradation process of zinc alginate. Based on the TG results and FTIR of the residues at different temperatures, the effect of zinc ions on the degradation process of alginate was different from that of sodium ions. The zinc ions can catalyze alginate to form the residues and increase the amount of the residues, finally forming zinc oxide. Further, it could decrease the release of flammable gases and increase the flame retardancy of alginate.  相似文献   

11.
Abstract

An epoxy resin (EP) composite with a novel phosphorus and silicon-containing flame retardant (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-polyvinylsilicone-polyphenylaminosilicone, DOPO-V-PA) was prepared in this study. From the cone calorimeter measurements, it was confirmed that the EP/DOPO-V-PA (FREP) composite had relatively better flame retardancy than pure EP. The activation energy was calculated with the Kissinger and Ozawa–Flynn–Wall methods. The results showed that the activation energies of pure EP had slightly higher values than the FREP composite in the early and middle degradation stage (conversion ≤ 90% spaces), which indicated that the earlier degradation of the DOPO-V-PA at low temperature accelerated the degradation of the EP matrix. However, the activation energy values of the FREP were higher than those of pure EP in the final stage, which are attributed to the thermal stabilization effect of the DOPO-V-PA through the promoting of EP char formation.  相似文献   

12.
A method for evaluating Ea(loss), the apparent activation energy of the analyte loss process during the high-temperature thermal pretreatment stage in electrothermal atomization atomic absorption spectrometry (ETA-AAS) has been developed. The method is based on extracting information from the declining portion of thermal pretreatment curves (in this case presented as absorbance vs pyrolysis time at various fixed temperatures). Five volatile analytes (As, Pb, Sb, Se, and Sn) have been studied in the presence of tungsten chemical modifier (20 μg of W in H2O2).

The data on Ea (loss) have been utilized together with those obtained from treating the atomization peaks Ea and with literature data on known values of bond energies and enthalpies of certain chemical reactions. Possible mechanisms of analyte losses and atomization are discussed.  相似文献   

13.
A novel synergistic flame retardant agent containing boron and silicon, namely polyborosiloxane (PBSil), was prepared via the condensation reaction of boric acid (BA), tetraethoxysilane (TEOS), and octamethyl cyclotetrasiloxane (OMCTS). The obtained PBSil was then combined with an intumescent flame retardant (IFR) to flame retard polypropylene (PP), and the effects of PBSil on the flame retardancy and thermal degradation of the PP/IFR composite were investigated. It was found that PBSil could improve the compatibility between the IFR and the PP matrix, thereby improving the mechanical properties of the composite. Compared with zinc borate, zeolite, and nano-silica, PBSil showed much better flame retardancy and smoke suppression in the PP/IFR composite. When the content of PBSil was 3.0 wt%, the limiting oxygen index (LOI) value of the flame retardant PP was increased from 29.0% to 35.0%, and the UL-94 rating was improved from V-1 to V-0 rating. Simultaneously, the heat release rate (HRR) and smoke production rate (SPR) of the composite were decreased dramatically. The thermogravimetric (TG) analysis, Fourier transform infrared (FTIR), and thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) results showed that, PBSil could enhance the thermostability of the IFR, and promote the char formation. Furthermore, the compactness and thermostability of the intumescent char were significantly improved, contributing to the improvement of the flame retardancy of the composite.  相似文献   

14.
Organic vermiculite (OVMT) prepared from vermiculite (VMT), with high aspect ratio and orderly arranged platelets intercalated by octadecyl trimethyl ammonum bromide (OTAB), was used as a synergistic agent on the flame retardancy of a polypropylene/intumescent flame retardant (PP/IFR) system. The flammability and thermal stability of PP/IFR/OVMT composites were investigated by limiting oxygen index (LOI), UL-94 testing, cone calorimetry tests, and thermogravometric analysis. The results of LOI and UL-94 testing showed that low loading of OVMT improved the flame retardancy and retarded dripping for PP/IFR composites. OVMT, with 1% loading, increased the char residue of PP/IFR composites and could act as an effective additive for improvement in flame retardancy, which was confirmed by the cone data. The char layer morphological structures observed by scanning electron microscopy (SEM) showed that OVMT with 1% loading can promote formation of a continuous and compact intumescent char layer. Raman spectroscopy results indicated that the OVMT or its pyrolytic products led to a decrease in size of the carbonaceous micro-domain during combustion, resulting in formation of more compact charred layers. Thus, OVMT with 1% loading showed a synergistic effect with IFR in the combustion of the PP/IFR composites.  相似文献   

15.
Though the positive role of ultrasound has been confirmed in the mineral extraction, its potential towards fiercely mechanically-activated mineral was not yet mentioned. In this study, as a novel mechanical activation style, bead milling (BM) was presented and ZnO ore was selected to determine its effectiveness. Results showed that median particle size of ZnO ore could be pulverized to as low as 1/164 of its original value (from ∼29.2 μm to ∼178 nm), indicating much higher activation potential of BM than that of conventional ball milling. Besides, structure destruction, even phase transformation with the direct participation of airborne CO2 occurred. All these processes rendered the superior activation capacity of BM. In view of the extraction promotion, the combination of ultrasound and BM exerted more pronounced effect than those of individual ones, indicating the synergistic effect between extra energy input (by ultrasound) and inner energy storage (by fierce BM). The classic shrinking core model with the product layer diffusion as the rate-controlling step was found to well model the extraction kinetics. The modeling disclosed high capability of ultrasound and BM combination in decreasing the activation energy (Ea) (from 54.6 kJ/mol to 26.4 kJ/mol), while ultrasound, BM could only decrease the Ea to 44.9 kJ/mol, 41.5 kJ/mol, respectively. The dual roles of ultrasound were specially highlighted: (i) participation in the extraction process via direct energy input, (ii) regulation of the aggregation that the activated ore suspension was confronted with.  相似文献   

16.
Poly(vinyl alcohol) (PVA) polymer was prepared using the casting technique. The obtained PVA thin films have been irradiated with electron beam doses ranging from 20 to 300 kGy. The resultant effect of electron beam irradiation on the structural properties of PVA has been investigated using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), while the thermal properties have been investigated using thermo-gravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T 0 and activation energy of thermal decomposition E a were calculated, results indicate that the PVA thin film decomposes in one main weight loss stage. Also, the electron beam irradiation in dose range 95–210 kGy led to a more compact structure of the PVA polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with electron beam dose has been determined using DTA. The PVA thermograms were characterized by the appearance of an endothermic peak due to melting. In addition, the transmission of the PVA samples and any color changes were studied. The color intensity Δ E was greatly increased with increasing electron beam dose, and was accompanied by a significant increase in the blue color component.  相似文献   

17.
A simplified two-step kinetics model for the combustion of energetic solids has been used to investigate the effect of gas-phase activation energy on flame structure and burning rate and the role of gas- versus condensed-phase kinetics in determining burning rate. The following assumptions are made: a single-step, unimolecular, high activation energy decomposition process which is overall relatively energetically neutral, is followed by a highly exothermic single-step, bimolecular, gas-phase reaction with arbitrary activation energy, E? g. The results show that at extremely low (<104 Pa) or high (>1012 Pa) pressures the burning rate is controlled by the condensed-phase reaction kinetics for any E?g. At intermediate pressures (105-1010 Pa) gas reaction kinetics contribute strongly to the burning rate. In this pressure range the value of E?g plays an important function in determining the role of gas- and condensed-phase reactions: for high E?g a gas-phase kinetically controlled regime exists; for low E?g both condensed and gas-phase kinetics are important. The limiting behaviour of asymptotically large E?g (gas kinetically controlled burning rate) occurs at about E?g=20 kcal mol?1 for parameters representative of HMX, while the vanishingly small E?g behaviour occurs near E?g. Previous comparison with burning rate and temperature profile data has suggested that the small-E?g limit is the more accurate of the two extremes. This may imply that the important (burning rate influencing) primary gas reaction zone near the surface has more the character of a chain reaction mechanism than the classical high activation energy thermal decomposition mechanism. To the degree that the low-E?g chain reaction model is a better approximation than the high-E?g thermal decomposition model, the possibility exists that the chemistry of either reaction zone, including the molecular structure of the material, might be exploited for favourable tailoring of burning rate. The low-E?g model also provides a rational mechanistic explanation of observed trends in burning rate temperature sensitivity with pressure and temperature for materials like HMX in terms of a gradual transition from mixed gas- and condensed-phase kinetic control to condensed-phase only kinetic control as the pressure decreases.  相似文献   

18.
The reaction between molecular oxygen and an isolated zigzag graphene edge has been studied using density functional theory at the B3LYP/6-31G(d) level of theory. The initial reaction forms a peroxide, ΔH = −135 kJ mol−1. If the graphene edge is pre-oxidised, the dangling peroxy atom can (Ea = 91 kJ mol−1) migrate across contiguous ketone groups until finding another vacant site and stabilizing as a ketone. However, if no further vacant sites are available, the peroxy oxygen has a number of other possibilities open to it, including desorption of an oxygen atom (Ea = 140 kJ mol−1), migration via the basal plane to form a lactone (Ea = 147 kJ mol−1), and direct interaction with an adjacent oxide to form the lactone or a carbonate (Ea = 146 kJ mol−1). The combination of thermal energy and the heat released in the initial formation of the peroxy adduct is likely to be sufficient to overcome these secondary barriers at modest temperatures.Transfer of the dangling peroxy O to the basal plane produces an epoxide that is mobile on the basal surface (Ea = 40–80 kJ mol−1) but that is transferred back to the edge upon coming into proximity of either a vacant edge site or ketone. The instability of the edge epoxide structure implies that it cannot play a significant role in carbon gasification through promoting the reactivity of ketones, contrary to earlier suggestions.The desorption of an oxygen atom creates a very active species capable of reacting with basal or edge sites as well as with oxygen complexes. The reaction of ketone + O has been reported to yield a five-membered ring + CO2, leading to an overall stoichiometry which is consistent with the observed oxyreactivity of carbon surface oxides identified in isotopic labelling studies in which one O atom is gasified and the other forms a new surface oxide.  相似文献   

19.
Long-term hydrothermal aging of polyamide 6 (PA6)/glass fibre (GF) composites was conducted and the effects of the GF on variations of structure and properties of the composites with aging time were investigated. It was found that the first stage of aging was a Fickian process and corresponded to the physical absorption of water until equilibrium, resulting in a slight change of reduced viscosity and chemical structure of the PA6. The water diffusing process was slowed down slightly by addition of the GF. The second stage of aging was the initiation process of hydrolytic degradation of PA6, resulting in a rapid decrease of reduced viscosity and an increase of end group content. In the final stage of aging, the relative weight gain (Wr) dropped, the reduced viscosity decreased and the end groups increased slowly. The degradation rate and carbonyl index of PA6 increased with increasing GF content, and the increasing rate of end groups concentration of the composites was higher than that of pure PA6 during the aging process, indicating addition of GF accelerated the hydrolysis degradation and oxidative aging of PA6. In mechanical property tests, compared with unaged samples of the composites which underwent matrix rupture around the matrix-fiber interfacial layer, for aged samples several smooth fibres without coatings were pulled out and the interfacial debonding was the main failure mode, causing severe deterioration in mechanical properties. The hydrolytic degradation activation energy (Ea) was calculated through a method based on the Arrhenius model by considering both temperature and humidity as environment factors; with increasing GF content, Ea decreased, indicating that the addition of GF made PA6 easier to degrade.  相似文献   

20.
In this article, the phase separation in the melt blended polycarbonate (PC) and ethylene propylene copolymer (EPC) has been studied with dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Two glass transition temperatures on the tan δ curves were detected. This confirms the immiscibility of PC and EPC phases. Different content of multi-walled carbon nanotubes (MWCNTs) were added to the PC/EPC blends and the interfacial adhesion between MWCNTs and PC/EPC blend were shown using transmission electron microscopy (TEM). The MWCNTs were located in the PC phase and at the interfaces of PC and EPC phases. Moreover, the storage modulus (E′) of polymer blends was changed by the increasing content of EPC elastomer and MWCNTs. The value of E′ of PC decreased with an incorporation of EPC. While, along with an addition of MWCNTs in the PC/EPC blends an increase of E′ was visible. The strong interfacial interactions between the matrix and MWCNTs played the main role in increasing the values of the E′ of the nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号