首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal properties of polypropylene with poly(cis-butadiene) rubber (iPP/PcBR) blends have been measured by differential scanning calorimetry (DSC), and the melting point Tm, crystallization temperature Tc, enthalpy Δ H (melting enthalpies and crystalline enthalpies), and equilibrium melting point T0 m have been measured and calculated. The variation of Tm, Tc, Δ H and T0 m with composition in the blends was discussed, showing that an interaction between phases is present in iPP/PcBR blends. The degree of supercooling characterizing the interaction between two phases in the blends and the crystallizability of the blends which bears a relationship to the composition of the blends was discussed. The kinetics of isothermal crystallization of the crystalline phase in iPP/PcBR blends was studied in terms of the Avrami equation, and the Avrami exponent n and velocity constant K were obtained. The Avrami exponent n is between 3 and 2, meaning that iPP has a thermal nucleation with two dimensional growths. The variation of the Avrami exponent n, velocity constant K, and crystallization rate G bear a relation to the composition of the blends, n increases with increasing content ofPcBR. K also increased with increasing content of PcBR. All of the K for the blends are greater than for pure iPP. The crystallization rate G (t1/2) depends on the compositions in the blends; all G of the blends are greater than for iPP.  相似文献   

2.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   

3.
The thermal behaviors of polystyrene (PS)/triphenylmethyl chloride (TPCM) blends with different polymer molecular weights were investigated through differential scanning colorimetry (DSC). It was shown that when solvent content was lower than a critical composition, there was only a single amorphous phase in the blends. With increasing polymer concentration, both Tg and Tm could be detected in DSC curves, revealing that the blends were heterogeneous. The constant Tg of the amorphous phase indicated that the composition of the amorphous phase in the blends did not depend on the solvent concentration, and the Tm depression with decreasing PS content showed the decrease of TPCM crystallite size owing to geometric constraint by the polymer chains. On the basis of the Flory–Huggins theory, the interaction parameters between PS and TPCM in the blends were obtained; they showed that the PS/TPCM blends were not thermodynamically miscible with low polymer content. The Hoffmann-Weeks equation indicated that the crystals corresponding to the lower melting point were unstable. The unstable crystals in the blends were located in the interfacial regions between the crystalline solvent molecules and the amorphous phase. The heat capacity of the blends confirmed the geometric constraint on the crystallization of TPCM in the blends.  相似文献   

4.
Samples from polycarbonate/poly (butylene terephthalate) (PC/PBT) blends film have been irradiated using different fluences (1?×?1015– 5?×?1017 H+/cm2) of 1?MeV protons at the University of Surrey Ion Beam Center, UK. The structural modi?cations in the proton irradiated samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction and UV spectroscopy. The results indicate that the proton irradiation reduces the optical energy gap that could be attributed to the increase in structural disorder of the irradiated samples due to crosslinking. Furthermore, the color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different proton fluences, increased with increasing the proton fluence up to 5?×?1017 H+/cm2, convoyed by an increase in the red and yellow color components. In addition, the resultant effect of proton irradiation on the thermal properties of the PC/PBT samples has been investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It is found that the PC/PBT decomposes in one weight loss stage. Also, the variation of transition temperatures with proton fluence has been determined using DSC. The PC/PBT thermograms were characterized by the appearance of two endothermic peaks due to the glass transition and melting temperatures. The melting temperature of the polymer, Tm, was investigated to probe the crystalline domains of the polymer, since the proton irradiation destroys the crystalline structure so reducing the melting temperature.  相似文献   

5.
A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T o, activation energy of decomposition E a, melting temperature T m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied.

It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27–8.53 J/cm2 decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.  相似文献   

6.
Various compositions of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends were prepared in decalin, with the rheological, mechanical, thermal, and surface properties of the blends being determined using the solution cast film. Viscosity and mechanical properties of the blends decreased below the additivity value with increasing PP content implying that PP molecules disturb the entanglement of UHMWPE. Contact angle of the blend films with a water drop increased with increasing content of PP. The atomic force microscope (AFM) images showed that the surface of cast UHMWPE was very smooth whereas that of cast PP was very uneven. For blends, the surface became rough and uneven with increasing content of PP. The melting temperature of PP (T mP) decreased in the blends with increasing UHMWPE content while that of UHMWPE (T mU) remained almost constant in blends.  相似文献   

7.
The thermal stability of PU has been a critical factor to influence its applications as engineering materials. In this paper, the thermal properties of Fe-octacarboxyl acid phthalocyanine (Fe-OCAP)/polyurethane (PU) blends were investigated. The glass transition temperatures (Tg) of Fe-OCAP/PU blends were analyzed by differential scanning calorimetry (DSC). The results showed that with increasing Fe-OCAP content up to 10% Tg of the samples decreased. Thermal stability of the samples was studied by thermogravimetric analysis (TGA). The decrease of the degradation rate of the samples with increasing Fe-OCAP content indicated an improvement of thermal stability for the modified samples. The activation energy of thermal degradation was calculated by the Freeman and Carroll method. The results showed that the activation energy increased with increasing Fe-OCAP content, which also indicated the improved thermal stability obtained in the modified samples. The thermal properties of the samples were influenced by the incorporation of Fe-OCAP.  相似文献   

8.
Crystallization and melting behavior of β-nucleated propylene/1-pentene random copolymers were studied. Samples with different comonomer content were nucleated with the calcium salt of suberic acid. The WAXS, differential scanning calorimetry (DSC), and polarized light microscopy (PLM) measurements showed that morphological behavior of the β-nucleated copolymers is similar to that of the homopolymer, but the rate of crystallization and the characteristic temperatures decrease with increasing pentene content. Crystallization at low temperatures and lower chain regularity lead to the formation of imperfect crystal structures with high instability, which enables the study of structural perfection processes like ββ′- or βα-recrystallization during partial melting. The PLM studies proved that the critical crossover temperature T(βα) decreases with increasing pentene content. The effect of comonomer content on the critical recooling temperature ( T R * ), as well as on the equilibrium melting point of the β-form ( T m 0) was also investigated. However, in our case, the linear Hoffman–Weeks method proved to be unsuitable for the accurate determination of T m 0.  相似文献   

9.
Maleic acid-alt-styrene (MAaS) copolymer with number-average molecular weight [Mbar] n = 2500 was used as a compatibilizer in blends of poly(ethylene oxide) (PEO) and poly(styrene) (PS). PEO with weight-average molecular weight [Mbar] w = 105 (PEO100) and two PS samples with [Mbar] w = 9 × 104 and 4 × 105, respectively (PS90 and PS400, respectively) were used. A depression of the melting temperature T m of PEO in blends containing MAaS relative to pure PEO and PEO/PS blends was observed. The melting enthalpy ΔH m for the PEO/PS blends containing MAaS was lower than those of pure PEO and PEO/PS blends without compatibilizer. The crystallization kinetics of PEO and the blends were studied by differential scanning calorimetry (DSC) at different crystallization temperatures T c. Flory-Huggins interaction parameters χ12 for the blends were estimated. Their values are in good agreement with those obtained for similar systems and suggest that the free energy of mixing ΔG mix should be negative. Polarized optical microscopy shows differences in the macroscopic homogeneity of the blends containing compatibilizer that could be attributed to a compatibilization process.  相似文献   

10.
Low-density polyethylene (LDPE) films with different copper contents were prepared from solu-tion. The TGA (thermogravimetric analysis) results show that the presence of copper particles can im-prove the thermal stability of the composite since a maximum increment of 14°C is obtained compared with the pure LDPE in this experiment. The results of DSC (differential scanning calorimetry) in stan-dard conditions show that the Cu content has little influence on the crystallinity, X c , of LDPE. But a trace of DSC under non-standard conditions suggests that the presence of the copper microparticles has a greater effect on the network phase than on the crystalline long-range-order phase. FTIR spectroscopy was used to study the phase content of LDPE in LDPE/Cu non-oriented composite films prepared from solution with different copper contents by analysis of CH2 rocking vibrations. A spectral simulation of transmission spectra performed using a two-phase model does not show any variation into the phase composition of the LDPE matrix for all copper contents. When a three-phase model was taken into account, the amount of the orthorhombic phase was found to be constant. However, the fraction of the amorphous and that of the network phase were found to increase and decrease respectively with increase in the copper particle load in the film.  相似文献   

11.
Two types of butadiene-acrylonitrile rubbers (i.e., carboxyl randomized butadiene-acrylonitrile rubber (CRBN) and hydroxyl terminated butadiene-acrylonitrile rubber (HTBN)) have been used for modifying an interpenetrating network of cyanate ester (CE)/epoxy resin (EP) (70/30). The toughness of the matrix can be improved effectively with addition of rubbers. The values of impact strength (11.6 KJ/m2) show a maximum for the CE/EP/HTBN (70/30/8) blend. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that CRBN and HTBN have a different dispersion state in the CE/EP matrix. CRBN aggregates to form regular spheres with a size of about 1 μm. HTBN disperse homogeneously with its size of the nano-level (about 10 nm). Fourier transform infrared spectrum (FTIR) and differential scanning calorimetric (DSC) analysis shows that the CRBN has higher reactivity than HTBN. The thermal gravimetric analysis (TGA) results shows that T 10 (temperature of 10% weight loss) of the CE/EP system decreases with the addition of rubbers. For the CE/EP/CRBN system, both T 30 (temperature of 30% weight loss) and T 50 (temperature of 50% weight loss) are lower than neat CE/EP. However, for the CE/EP/HTBN system, both T 30 and T 50 are near to neat CE/EP. Different reactivity and compatibility between the rubbers and CE/EP matrix is the main determining factor for the thermal stability of the blends.  相似文献   

12.
The melting behaviors of poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends, compatibilized by epoxy, and PTT spherulite morphology in the blends were investigated. When epoxy was present during blending, the melting behaviors of PTT/PC blends changed substantially; glass transition temperatures (Tg's) and cold crystallization temperature (Tcc's) of the PTT‐rich phase shifted to higher temperatures, while Tm's shifted slightly to lower temperatures, indicating that epoxy suppressed considerably all processes of dynamic movements pertinent to molecular (or segmental) movements. The cold crystallization process responded sensitively to thermal history. Changes of Tcc's with composition suggested that the epoxy's compatibilization effect was pronounced when PTT and PC were in near equal content.

Recrystallization or reorganization exotherms appeared before melting for isothermally crystallized PTT/PC and PTT/PC epoxy (E) blends. A wide angle X‐ray diffraction (WAXD) analysis showed that, although the perfection of PTT crystallites was influenced either by PC content and the presence of compatibilizer or by the crystallization temperature and crystallization time, PTT's crystal structure was independent of these variables.

The polarized light microscopy (PLM) observations showed that PTT spherulite morphology was very sensitive to blend composition. Epoxy addition interfered severely with the growth of PTT spherulites, causing them to be much less developed. When the spherulites grew under a condition of varied composition, they would exhibit diversified spherulite morphology, though in one spherulite.  相似文献   

13.
The melting and recrystallization of nylon-6,10 thin films immersed in an aqueous solution of calcium chloride were investigated by DSC measurements. The crystal length, ζ, was determined as a function of the melting peak temperature, T m . The end surface free energy of nylon-6,10 crystals used for the ζT m conversion was derived thermodynamically. For films of 0.01 mm thickness, the original length of ζ (=7.6 structural units) at T m decreased step by step with increasing immersion time by the length near the structural unit (2.24 nm) per step. However, the suppression of the recrystallization after melting of the original crystals formed during the first cooling by the adsorbed calcium ions did not occur completely, even for films immersed for 30~60 min at 50°C.  相似文献   

14.
ABSTRACT

In this study, we investigated the graft copolymerization of methyl methacrylate (MMA) onto low-density polyethylene (LDPE) in the presence of aniline as an inhibitor by gamma radiation. An alkaline treatment was carried out for the prepared graft copolymer. The structural properties of the prepared samples were examined via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD peaks were slightly shifted, indicating an interaction between MMA and the polyethylene matrix. The morphology of the samples confirmed the homogenous grafted phase scattered onto the LDPE surface. Analysis of the absorption spectra indicated an allowed indirect transition mechanism. The Urbach energy (EU) results showed that the value of the EU for grafted LDPE was found to be higher than that of pure LDPE—up to 15?kGy irradiation dose, although this value decreases upon grafting. However, the value of the EU for alkaline-treated grafted films decreases systematically by increasing the degree of grafting. The thermogravimetric analysis (TGA) of the sample indicated that the thermal stability of LDPE samples is significantly changed by grafting MMA onto it. Horowitz and Metzger's models were utilized to measure the activation energy of the thermal decomposition of all samples.  相似文献   

15.
《Composite Interfaces》2013,20(7-9):841-850
Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T c and ΔH c increases. As a conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.  相似文献   

16.
EPDM-graft-methyl methacrylate and styrene (EPDM-g-MS) were synthesized by solution graft copolymerization of methyl methacrylate (MMA) and styrene (St) onto ethylene-propylene-diene terpolymer (EPDM). EPDM-g-MS/MS resin blends (MES) tht were prepared by melt blending EPDM-g-MS and methyl methacrylate-styrene copolymer (MS resin). The mechanical properties, compatibility, thermal stabilities and rheological properties of MES were studied by the pendulum impact tester and the tension tester, differential scanning calorimetric (DSC), thermogravimetry analysis (TGA), and the capillary rheometry, respectively. The results showed that EPDM-g-MS had an excellent toughening effect on MS resin; the notched Izod impact strength of MES reached 20.7 kJ/m2 when EPDM content in MES was 25 wt%, about 14 times that of MS resin. EPDM-g-MS and MS resin were partially compatible, and the compatibility increased with an increasing MMA/St ratio of EPDM-g-MS. MES had excellent heat-resistance, which increased as the EPDM content in MES and MMA/St ratio of EPDM-g-MS rose. MES melt flow confirmed pseudoplastic flow characteristics. The apparent viscosity (η a ) of MES decreased with an increasing shearing rate (γ) and temperature, but increased with an increasing EPDM content in MES and MMA/St ratio of EPDM-g-MS. The flow activation energy of MES was lower than that of MS resin.  相似文献   

17.
There has been much research and speculation recently on the nature of radiation induced defects in zirconium and its alloys, and in particular on the absence of voids at high fluences and temperatures in the range 0.3 to 0.5 T m (T m is the absolute melting temperature). Wolfenden and Farrell1 have reviewed the evidence and suggest that α-Zr has so far resisted void formation during neutron irradiation because of: (a) the absence of a dislocation (loop or tangle) structure and/or (b) a low insoluble gas (e.g. helium) content.  相似文献   

18.
A calorimetric study of Te15(Se100? x Bi x )85 glassy alloys (x = 0, 1, 2, 3 and 4 at. %) is reported. Differential thermal analysis (DTA) was performed at heating rates of 10, 15, 20 and 25 K/min. The spectra were used to determine the glass transition temperature, Tg , the crystallisation temperature, Tc and the melting temperature, Tm . All these parameters shift to higher values with increasing heating rate, β. The glass transition temperature and the melting temperature increase, and the crystallisation temperature decreases, with increase in the Bi content, x. The activation energy of the glass transition, Eg , was evaluated using the Moynihan and Kissinger methods. The activation energy of crystallisation, Ec , was calculated using modified Kissinger and Matusita approaches. The thermal stability of these glasses has been studied and found to decrease with increase in Bi content. The results obtained are explained on the basis of a chemically ordered network model and an average coordination number.  相似文献   

19.
The crystallization behavior of poly(trimethylene terephthalate (PTT) in compatibilized and uncompatibilized PTT/polycarbonate (PC) blends are investigated in the research reported in this paper. The differential scanning calorimetry (DSC) results showed that the crystallization behaviors of PTT/PC blends were very sensitive to PC content. The onset (Tci) and the peak (Tc) crystallization temperatures shifted to lower temperatures whereas the area of the exotherm decreased quickly as the PC content was increased. The Avrami exponent, n, decreased from 4.32 to 3.61 as the PC content was increased from 0 to 20 wt %, and the growth rate constant, Z c , decreased gradually as well. This suggests that the nucleation mechanism exhibits the tendency of changing gradually from a thermal nucleation to an athermal mode although the growth mechanism still remains three‐dimensional. When epoxy (2.7 phr) was added as a compatibilizer during melt blending, the Tci and Tc shifted slightly to higher temperature (≤2°C), and the crystallization enthalpy, however, exhibited an increased crystallinity with the exception of the 90/10/2.7 phr PTT/PC/Epoxy. This suggests that the epoxy make a positive contribution to the PTT crystallization. Moreover, the influences of epoxy on the crystallization behaviors of PTT/PC blends are related to the epoxy content. By contrast, the compatibilizer of ethylene‐propylene‐diene copolymer graft glycidyl methacrylate (EPDM‐g‐GMA, ≤6.3 phr) had little effect on the crystallization behavior of PTT/PC blends. For PTT/PC/Epoxy (2.7 phr) blends, the Avrami exponent, n, decreased to near 3, while the growth rate constant, Z c , increased slightly as PC content was increased from 0 to 20 wt %. It is suggested that epoxy accelerated the process of the nucleation mechanism changing from thermal nucleation to an athermal mode. The EPDM‐g‐GMA had little effect on the nucleation mode and spherical growth mechanism. The PTT spherulite morphologies in PTT/PC blends were very sensitive to blend composition. Completely different morphologies were observed in pure PTT, PTT/PC, PTT/PC/Epoxy, and PTT/PC/EPDM‐g‐GMA blends.  相似文献   

20.
The effects of whisker content, sample holding time, and differential scanning calorimetry (DSC) analysis of the crystal structure of polypropylene/Mg 2 B 2 O 5 whisker composites were investigated. DSC shows a double melting peak, T 1 at about 151°C and T 2 at about 166°C. Detailed analysis of wide angle X-ray diffraction (WAXD) shows that a γ phase may exist in the polypropylene/Mg 2 B 2 O 5 composite. The experimental results also show that the crystal structure according to MPLT (melting peak at low temperature) was more perfect and the crystallinity according to MPLT increased with increasing whisker content. The sample holding time at room temperature following injection molding had a significant effect on the number of γ -crystal nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号