首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented.  相似文献   

2.
This paper contains an analysis of the stress distribution in a plate of finite thickness of an elastic material containing a penny-shaped crack when it is deformed by the application of a uniform shearing stress on the surface of the plate. The crack lies on the central plane of the plate with its surface parallel to those of the plate and is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of Fredholm integral equations of the second kind. This pair of Fredholm integral equations of the second kind is solved numerically, and the increase in the stress intensity magnification factor due to the effect of the finite thickness of the plate is presented for various values of the thickness.  相似文献   

3.
We study the stress state in the vicinity of a planar surface crack whose boundary is described by the limaçon of pascal. The problem is solved by a conformal mapping of the region occupied by the crack onto part of a disk in the plane. This makes it possible to apply a numerical-analytic method for solving systems of double singular integral equations of the mathematical theory of cracks. We present the graphs of the dependence of the stress intensity factor on the angular coordinate for cracks that are part of a limaçon of Pascal.  相似文献   

4.
It is shown that a well-known series expansion of the stress function around a tip of a crack in an elastic plate, converges on a two-sheet Riemann surface. Explicit expressions for its coefficients, the stress intensity factors, are obtained. More generally, a new series expansion around the whole crack is found and investigated.  相似文献   

5.
提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.  相似文献   

6.
The 3D‐elasticity model of a solid with a plane crack under the stress‐free boundary conditions at the crack is considered. We investigate variations of a solution and of energy functionals with respect to perturbations of the crack front in the plane. The corresponding expansions at least up to the second‐order terms are obtained. The strong derivatives of the solution are constructed as an iterative solution of the same elasticity problem with specified right‐hand sides. Using the expansion of the potential and surface energy, we consider an approximate quadratic form for local shape optimization of the crack front defined by the Griffith criterion. To specify its properties, a procedure of discrete optimization is proposed, which reduces to a matrix variational inequality. At least for a small load we prove its solvability and find a quasi‐static model of the crack growth depending on the loading parameter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The present paper examines the problem of the complete indentation of the surface of a penny-shaped crack by a smooth rigid disc inclusion. The integral equation governing the problem is solved numerically to evaluate the axial stiffness of the rigid inclusion and the stress intensity factors at the tip of the penny-shaped crack.  相似文献   

8.
We study the elastic equilibrium of a closed infinite circular cylindrical shell with a system of surface cracks of identical length and depth. We use the method of singular integral equations together with the modeling of solid matter in the plane of a part-through crack by irregularly distributed “line springs”. We conduct a numerical analysis of the variation of the relative stress intensity factor at the center of a crack as a function of the parameters of a crack and the number of cracks. We study cracks located on both the interior and exterior surface of the shell. Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, No. 37, 1994, pp. 63–65.  相似文献   

9.
理论研究了纳米尺度孔边均布径向多裂纹的Ⅲ型断裂性能.基于Gurtin-Murdoch表面弹性理论和保角映射技术,获得了孔和裂纹应力场的解析解,给出了裂纹尖端应力强度因子的闭合解.基于解答分析了应力强度因子的尺寸效应,讨论了裂纹数量、裂纹/孔径比和缺陷表面性能对应力强度因子的影响.结果表明:当孔和裂纹尺寸在纳米量级时,无量纲应力强度因子具有显著的尺寸效应;应力强度因子随裂纹数量的变化规律受裂纹/孔径比的影响;裂纹/孔径比对应力强度因子的影响受到缺陷表面性能的制约,同时表面性能对应力强度因子的影响也受限于裂纹/孔径比;表面效应对应力强度因子的影响与裂纹数量无关.  相似文献   

10.
具有抛物线边界的二维弹性介质的Green函数   总被引:2,自引:1,他引:1  
文章求解了具有抛物线边界的二维弹性介质的两种Green函数,一种是自由边界问题,另一种是刚性边界问题。我们还求得了当抛物线边界退化成半无限裂纹或半无限刚性裂纹时裂纹尖端的奇异场,得到了集中力作用于边界的基本解,这个基本解使得我们可以通过沿边界积分确定任意分布荷载的弹性解.  相似文献   

11.
采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现.  相似文献   

12.
13.
This paper contains an analysis of the stress distribution in an elastic medium having cylindrical cavity with a circumferential edge crack when it is deformed by the application of uniform shearing stress. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is calculated. Also the crack opening displacements are displayed in graphical forms.Received: January 24, 2002; revised: October 17, 2002  相似文献   

14.
The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to the shaft weight is studied. This breathing mechanism is based on experimental and simulation result for the crack shape reported in the literature. If the crack depth is small, the crack closure line is a straight line while for larger crack depths the crack closure becomes more curved. For both cases, a method is proposed for the evaluation of the stiffness losses in the cross section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM) approach, because LEFM is valid only for the fully open crack and cannot be extended to other intermediate situations. As the crack is closed, the stress intensity factor (SIF) will not appear at the boundary between the closed cracked areas and the open cracked areas. The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The proposed model gives more realistic results than models based on LEFM for the stiffness losses of the crack rotor system for a wide range of the crack depth. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Stress intensity factor and stress distribution at crack tips are classical problems in solids, which are closely related to the failure and reliability of materials. A crack in a nonlinearly coupled anisotropic medium, on the other hand, is much more difficult to analyze. Using the generalized complex variable method, the thermal stress problem of a crack embedded in an orthotropic medium has been analyzed, and the progressive thermal stress distributions have been obtained in closed-forms. The analysis shows that the thermal stress intensity factors are linear functions of remote thermal flux while are nonlinear functions of remote current; the thermal stress distributions under produced by thermal flux and Joule heating are similar, but not identical; the thermal stress intensity factors are linear functions with respect to the thermal expansion coefficients; with the increase of crack length, the thermal stress intensity factor caused by Joule heat increases rapidly; the thermal stress intensity factors are directly proportional to the temperature difference between the upper and lower crack surfaces and the left and right half crack surfaces divided by the square root of the crack length, and the ratios are only determined by the material parameters. These results provide a powerful tool for the failure and reliability analysis of conductive materials, and suggested that thermal stress analysis may be localized.  相似文献   

16.
采用Schmidt方法分析了在简谐反平面剪切波作用下,两个半空间夹层压电材料中的共线裂纹的动力学行为.压电材料层内裂纹垂直于界面,电边界条件假设为可导通.通过Fourier变换,使问题的求解转换为两对三重积分对偶方程.通过数值计算,给出了裂纹的几何尺寸、压电材料常数、入射波频率等对于应力强度因子的影响.结果表明,在不同的入射波频率范围,动力场将阻碍或促使压电材料内裂纹的扩展.与不可导通电边界条件相比,导通裂纹表面的电位移强度因子比不可导通裂纹的电位移强度因子要小许多.  相似文献   

17.
The present contribution focuses on fracture caused by indentation loading on the surface of a brittle solid. Its theoretical prediction is a challenging task due to the fact that crack nucleation is not geometrically induced, but is caused by the stress concentration in the contact near-field. The application of the phase field model requires constitutive assumptions to ensure a tension-compression asymmetric material response and prevent damage in compressed regions. This is achieved at the cost of giving up the variational concept of brittle fracture. We simulate the indentation of a cylindrical flat-ended punch on brittle materials like silicate glass. In order to reduce the numerical effort, we exploit axisymmetric conditions for the finite element formulation. After crack initiation stable propagation of a cone crack can be observed in good agreement with experiments. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
压电材料中两平行对称可导通裂纹断裂性能分析   总被引:7,自引:4,他引:3  
周振功  王彪 《应用数学和力学》2002,23(12):1211-1219
采用Schmidt研究了压电材料中对称平行的双可导通裂纹的断裂性能,利用富里叶变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程,并采用Schmidt方法来对这两对对偶积分程进行数值求解。结果表明应力强度因子和电位移强度因子与裂纹的几何尺寸有关。与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子。  相似文献   

19.
An extended displacement discontinuity (EDD) boundary integral equation method is proposed for analysis of arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack surface. Green's functions for unit point EDDs in an infinite three-dimensional medium of 2D hexagonal QC are derived using the Hankel transform method. Based on the Green's functions and the superposition theorem, the EDD boundary integral equations for an arbitrarily shaped planar crack in an infinite 2D hexagonal QC body are established. Using the EDD boundary integral equation method, the asymptotic behavior along the crack front is studied and the classical singular index of 1/2 is obtained at the crack edge. The extended stress intensity factors are expressed in terms of the EDDs across crack surfaces. Finally, the energy release rate is obtained using the definitions of the stress intensity factors.  相似文献   

20.
The Ritz variational method is applied to problems of a crack (a cut) in the middle half-plane of a three-dimensional elastic wedge. The faces of the elastic wedge are either stress-free (Problem A) or are under conditions of sliding or rigid clamping (Problems B and C respectively). The crack is open and is under a specified normal load. Each of the problems reduces to an operator integrodifferential equation in relation to the jump in normal displacement in the crack area. The method selected makes it possible to calculate the stress intensity factor at a relatively small distance from the edge of the wedge to the cut area. Numerical and asymptotic solutions [Pozharskii DA. An elliptical crack in an elastic three-dimensional wedge. Izv. Ross Akad. Nauk. MTT 1993;(6):105–12] for an elliptical crack are compared. In the second part of the paper the case of a cut reaching the edge of the wedge at one point is considered. This models a V-shaped crack whose apex has reached the edge of the wedge, giving a new singular point in the solution of boundary-value problems for equations of elastic equilibrium. The asymptotic form of the normal displacements and stress in the vicinity of the crack tip is investigated. Here, the method employed in [Babeshko VA, Glushkov YeV, Zinchenko ZhF. The dynamics of Inhomogeneous Linearly Elastic Media. Moscow: Nauka; 1989] and [Glushkov YeV, Glushkova NV. Singularities of the elastic stress field in the vicinity of the tip of a V-shaped three-dimensional crack. Izv. Ross Akad. Nauk. MTT 1992;(4):82–6] to find the operator spectrum is refined. The new basis function system selected enables the elements of an infinite-dimensional matrix to be expressed as converging series. The asymptotic form of the normal stress outside a V-shaped cut, which is identical with the asymptotic form of the contact pressure in the contact problem for an elastic wedge of half the aperture angle, is determined, when the contact area supplements the cut area up to the face of the wedge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号