首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper is concerned with the existence of travelling wave solutions to a singularly perturbed generalized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the associated ordinary differential equations, the persistence of solitary wave solutions of this equation is proved when the perturbation parameter is sufficiently small. The numerical simulations verify our theoretical analysis.  相似文献   

2.
In this paper,the complicated dynamics and multi-pulse homoclinic orbits of a two-degree-of-freedom parametrically excited nonlinear nano-oscillator with coupled cubic nonlinearities are studied.The damping,parametrical excitation and the nonlinearities are regarded as weak.The averaged equation depicting the fast and slow dynamics is derived through the method of multiple scales.The dynamics near the resonance band is revealed by doing a singular perturbation analysis and combining the extended Melnikov method.We are able to determine the criterion for the existence of the multi-pulse homoclinic orbits which can form the Shilnikov orbits and give rise to chaos.At last,numerical results are also given to illustrate the nonlinear behaviors and chaotic motions in the nonlinear nano-oscillator.  相似文献   

3.
We study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions which appear time periodic in a referential in translation at constant velocity. Approximate solutions of this type have been constructed in the form of modulated plane waves, whose envelopes satisfy the nonlinear Schrödinger equation (M. Remoissenet, Phys. Rev. B 33, n.4, 2386 (1986), J. Giannoulis and A. Mielke, Nonlinearity 17, p. 551–565 (2004)). In the case of travelling waves (where the phase velocity of the plane wave equals the group velocity of the wave packet), the existence of nearby exact solutions has been proved by Iooss and Kirchgässner, who have obtained exact solitary wave solutions superposed on an exponentially small oscillatory tail (G. Iooss, K. Kirchgässner, Commun. Math. Phys. 211, 439–464 (2000)). However, a rigorous existence result has been lacking in the more general case when phase and group velocities are different. This situation is examined in the present paper, in a case when the breather period and the inverse of its velocity are commensurate. We show that the center manifold reduction method introduced by Iooss and Kirchgässner is still applicable when the problem is formulated in an appropriate way. This allows us to reduce the problem locally to a finite dimensional reversible system of ordinary differential equations, whose principal part admits homoclinic solutions to quasi-periodic orbits under general conditions on the potential. For an even potential, using the additional symmetry of the system, we obtain homoclinic orbits to small periodic ones for the full reduced system. For the oscillator chain, these orbits correspond to exact small amplitude travelling breather solutions superposed on an exponentially small oscillatory tail. Their principal part (excluding the tail) coincides at leading order with the nonlinear Schrödinger approximation.  相似文献   

4.
This paper establishes surprisingly precise a priori bounds on theL -norm of certain singular solutions of a system of two nonlinear Sturm-Liouville equations which model solitary water waves.These solutions can be interpreted as homoclinic orbits for a system of four first order ordinary differential equations. The uniqueness of these homoclinic orbits is established for certain choices of a parameterc, the phase speed of the waves. These observations do not result from perturbation of linear theory, but are global.  相似文献   

5.
The space–time dynamics of the network system modeling collective behavior of electrically coupled nonlinear cells is investigated. The dynamics of a local cell is described by the FitzHugh–Nagumo system with complex threshold excitation. Heteroclinic orbits defining traveling wave front solutions are investigated in a moving frame system. A heteroclinic contour formed by separatrix manifolds of two saddle-foci is found in the phase space. The existence of such structure indicates the appearance of complex wave patterns in the network. Such solutions have been confirmed and analyzed numerically. Complex homoclinic orbits found in the neighborhood of the heteroclinic contour define the propagation of composite pulse excitations that can be self-replicated in collisions leading to the appearance of complex wave patterns.  相似文献   

6.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

7.
田瑞兰  杨新伟  曹庆杰  吴启亮 《中国物理 B》2012,21(2):20503-020503
Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soc. A 366 635).  相似文献   

8.
Nonlinear waves on periodic backgrounds play an important role in physical systems. In this study, nonlinear waves that include solitons, breathers, rogue waves, and semi-rational solutions on periodic backgrounds for the coupled Lakshmanan-Porsezian-Daniel equations are investigated. Moreover, the interactions between different types of nonlinear waves are examined and their dynamic behaviors are studied. In particular, it is observed that bright-dark rogue waves interact with bright-dark breathers or solitons on periodic backgrounds, four-petaled breathers interact with two eye-shaped breathers on periodic backgrounds, and a four-petal rogue wave interplays with a rogue wave on periodic backgrounds. Furthermore, it is found that the value of the parameter γ3 affects the weak and strong interactions of these nonlinear waves. These results may be useful in the study of nonlinear wave dynamics in coupled nonlinear wave models.  相似文献   

9.
周期参数扰动的T混沌系统同宿轨道分析   总被引:1,自引:0,他引:1       下载免费PDF全文
惠小健  王震  孙卫 《物理学报》2013,62(13):130507-130507
针对一类周期参数扰动的T混沌系统, 通过变换将系统转化为具有广义Hamilton结构的周期参数扰动的慢变系统, 运用Melnikov方法对系统的同宿轨道进行了分析计算, 并给出了系统的同宿轨道参数分支条件. 同时, 通过数值实验, 对周期参数扰动控制策略及同宿轨道进行了仿真, 验证了文中理论分析的正确性. 关键词: Hamilton系统 Melnikov方法 同宿轨道 周期参数扰动  相似文献   

10.
A new dust ion-acoustic wave structure called ‘Rogue wave triplets’ is investigated in an unmagnetized plasma consisting of stationary negatively charged dust grains, charged positive and negative ions, and electrons obeying kappa distribution, which is penetrated by an ion beam. The reductive perturbation theory is used to derive the nonlinear Schrödinger equation governing the dynamics as well as the modulation of wave packets. The rogue wave triplets which are composed of three separate Peregrine breathers can be generated in the modulation instability region. It has been suggested that a laboratory experiment be performed to test the theory presented here.  相似文献   

11.
We present a theory of the existence and stability of traveling periodic and solitary space charge wave solutions to a standard rate equation model of electrical conduction in extrinsic semiconductors which includes effects of field-dependent impurity impact ionization. A nondimensional set of equations is presented in which the small parameter β = (dielectric relaxation time) / (characteristic impurity time) 1 plays a crucial role for our singular perturbation analysis. For a narrow range of wave velocities a phase plane analysis gives a set of limit cycle orbits corresponding to periodic traveling waves. while for a unique value of wave velocity we find a homoclinic orbit corresponding to a moving solitary space charge wave of the type experimentally observed in p-type germanium. A linear stability analysis reveals all waves to be unstable under current bias on the infinite one-dimensional line. Finally, we conjecture that solitary waves may be stable in samples of finite length under voltage bias.  相似文献   

12.
We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-Jupiter-Oterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. Moreover, we show the existence of symbolic dynamics on six symbols for PCR3BP and the possibility of resonance transitions of the comet. This extends earlier results by Wilczak and Zgliczynski [12]. Electronic Supplementary Material: Supplementary material is available in the online version of this article at An erratum to this article is available at .  相似文献   

13.
This is a tutorial presentation of special features of galactic disc dynamics, which completes our introduction to galactic dynamics initially presented in [30]. The emphasis is on topics where galactic dynamics and celestial mechanics share common starting points and/or methods of approach. We start by giving some definitions and general notions on the link between observations and dynamical modeling of discs. Then we focus on the application of resonant Hamiltonian perturbation theory in disc resonances. By examining in detail the case of the Inner Lindblad resonance, we demonstrate how resonant perturbation theory leads to an orbital theory of spiral structure in normal galaxies. Passing to barred galaxies, the phase space structure and the role of chaos in the corotation region are analyzed. This is accomplished by a summary of the modern theory of invariant manifolds of unstable periodic orbits in the vicinity of L1 or L2, which can interpret the generation of spiral patterns by chaotic orbits beyond corotation. Some additional topics, potentially important for disc dynamics, are briefly commented.  相似文献   

14.
We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schr?dinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet.  相似文献   

15.
We construct asymptotic (long-time) solution of the linear Boltzmann equation using the time-dependent perturbation theory generalized to non-Hermitian operators. We prove that for times much larger than the relaxation time τ0, t ≫τ0, one-particle distribution function separates into spatio-temporal and velocity dependent parts, and provide the explicit expression for the long-time solution of the linear Boltzmann equation. Our analysis does not assume that relative density gradients $n^{-1}(\partial / \partial \mathaccent"017E{r}) n$n^{-1}(\partial / \partial \mathaccent"017E{r}) n are small. It relates the hydrodynamic form of the one-particle distribution function to spectral properties of operators involved in linear Boltzmann equation.  相似文献   

16.
Following the ideas of Howard and Kopell [9] a perturbation theory is developed for slowly varying fully nonlinear wavetrains (i.e. solutions which appear locally as travelling waves, but with frequencies and wavelengths which may vary widely on long length and time scales). This perturbation theory is applied to the Ginzburg-Landau equation. The motion and stability of slowly varying wavetrains is shown to be governed by a simple wave equation which can develop shocks corresponding to rapid changes in wavenumber. Numerical results supporting this theory are presented. A shock structure is proposed and numerically verified. These results together with a winding invariant valid in the limit of slow variation suggest that over a large range of parameters many initial conditions relax to uniform wavetrains. The evolution of a marginally diffusively stable wavetrain is also examined; it is argued that the evolution is governed by a perturbed Korteweg-de Vries equation.  相似文献   

17.
We propose a variational method for determining homoclinic and heteroclinic orbits including spiral-shaped ones in nonlinear dynamical systems. Starting from a suitable initial curve, a homotopy evolution equation is used to approach a true connecting orbit. The procedure is an extension of a variational method that has been used previously for locating cycles, and avoids the need for linearization in search of simple connecting orbits. Examples of homoclinic and heteroclinic orbits for typical dynamical systems are presented. In particular, several heteroclinic orbits of the steady-state Kuramoto–Sivashinsky equation are found, which display interesting topological structures, closely related to those of the corresponding periodic orbits.  相似文献   

18.
Homoclinic Bifurcation for Boussinesq Equation with Even Constraint   总被引:1,自引:0,他引:1       下载免费PDF全文
The exact homoclinic orbits and periodic soliton solution for the Boussinesq equation are shown. The equilibrium solution u0 = -1/6 is a unique bifurcation point. The homoclinic orbits and solitons will be interchanged with the solution varying from one side of-1/6 to the other aide. The solution structure can be understood in general.  相似文献   

19.
The splitting of separatrices of hyperbolic fixed points for exact symplectic maps of n degrees of freedom is considered. The non-degenerate critical points of a real-valued function (called the Melnikov potential) are associated to transverse homoclinic orbits and an asymptotic expression for the symplectic area between homoclinic orbits is given. Moreover, if the unperturbed invariant manifolds are completely doubled, it is shown that there exist, in general, at least $4$ primary homoclinic orbits (4n in antisymmetric maps). Both lower bounds are optimal. Two examples are presented: a 2n-dimensional central standard-like map and the Hamiltonian map associated to a magnetized spherical pendulum. Several topics are studied about these examples: existence of splitting, explicit computations of Melnikov potentials, transverse homoclinic orbits, exponentially small splitting, etc. Received: 6 June 1996 / Accepted: 16 April 1997  相似文献   

20.
We present new solutions to the nonautonomous nonlinear Schrödinger equation that may be realized through convenient manipulation of Bose-Einstein condensates. The procedure is based on the modulation of breathers through an analytical study of the one-dimensional Gross-Pitaevskii equation, which is known to offer a good theoretical model to describe quasi-one-dimensional cigar-shaped condensates. Using a specific ansatz, we transform the nonautonomous nonlinear equation into an autonomous one, which engenders composed states corresponding to solutions localized in space, with an oscillating behavior in time. Numerical simulations confirm stability of the modulated breathers against random perturbation on the input profile of the solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号