首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Investigations of wave and vibration properties of single- or multi-walled carbon nanotubes based on nonlocal beam models have been reported recently. However, there are numerous inconsistencies in the handling of the governing equations, applied forces, and boundary conditions based on some of the reported nonlocal beam models. In this paper, the consistent equations of motion for the nonlocal Euler and Timoshenko beam models are provided, and some issues on the nonlocal beam theories are discussed. The models are then applied to the studies of wave properties of single- and double-walled nanotubes. The wave and vibration properties of the nanotubes based on the presented nonlocal beam equations are studied, and scale effects are discussed.  相似文献   

2.
周期性结构热动力时间-空间多尺度分析   总被引:1,自引:0,他引:1  
张洪武  张盛  毕金英 《力学学报》2006,38(2):226-235
研究一种时间-空间多尺度渐近均匀化分析方法,模拟不同的极端热和动力载荷下微尺度多 相周期性结构中热动力响应问题,并建立一个广义的波动函数场控制方程描述热动力响应. 通过引入一个放大空间尺度和两个缩小时间尺度,在不同时间尺度上获得由空间非均匀性引 起的波动效应和非局部效应. 根据高阶均匀化理论在空间和时间上进行均匀化,获得高阶非 局部函数场波动方程. 并进一步用C0连续修正了高阶非局部函数场波动方程的有限元近 似解,使问题的求解避免了对有限元离散的C1连续性要求. 并与经典的空间均匀化方法 相比较,指出了经典的空间均匀化方法的局限性,进一步以一维非傅立叶热传导和热动力问 题为例,讨论了各种情况下方法的正确性与有效性.  相似文献   

3.
4.
In a previous study [D. Dutykh, F. Dias, Viscous potential free-surface flows in a fluid layer of finite depth, C. R. Acad. Sci. Paris, Ser. I 345 (2007) 113–118] we presented a novel visco-potential free-surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to the presence of a bottom boundary layer. Using the standard procedure of Boussinesq equations derivation, we come to nonlocal long wave equations. In this article we analyze dispersion relation properties of proposed models. The effect of nonlocal term on solitary and linear progressive waves attenuation is investigated. Finally, we present some computations with viscous Boussinesq equations solved by a Fourier type spectral method.  相似文献   

5.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

6.
Previous studies have shown that Eringen's differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates. Based on the nonlocal integral models along the radial and circumferential directions, we propose nonlocal integral polar models in this work. The proposed strainand stress-driven two-phase nonlocal integral polar models are applied to model the axisymmetric bending of circular microplates. The governing differential equations and boundary conditions (BCs) as well as constitutive constraints are deduced. It is found that the purely strain-driven nonlocal integral polar model turns to a traditional nonlocal differential polar model if the constitutive constraints are neglected. Meanwhile, the purely strain-and stress-driven nonlocal integral polar models are ill-posed, because the total number of the differential orders of the governing equations is less than that of the BCs plus constitutive constraints. Several nominal variables are introduced to simplify the mathematical expression, and the general differential quadrature method (GDQM) is applied to obtain the numerical solutions. The results from the current models (CMs) are compared with the data in the literature. It is clearly established that the consistent softening and toughening effects can be obtained for the strain-and stress-driven local/nonlocal integral polar models, respectively. The proposed two-phase local/nonlocal integral polar models (TPNIPMs) may provide an e-cient method to design and optimize the plate-like structures for microelectro-mechanical systems.  相似文献   

7.
In this paper, Gram determinant solutions of local and nonlocal integrable discrete nonlinear Schrödinger (IDNLS) equations are studied via the pair reduction. A generalized IDNLS equation is firstly introduced which possesses the single Casorati determinant solution. Two kinds of Gram determinant solutions are presented from Casorati determinant ones due to the gauge freedom. The different pair constraint conditions for wave numbers are imposed and then solutions of local and nonlocal IDNLS equations are derived in terms of Gram determinant.  相似文献   

8.
本文利用非局部弹性理论研究了单层石墨烯的纳米板的横向自由振动响应.通过迭代法推导了非局部应力表达,进一步通过哈密顿原理推导了纳米板的控制方程,应用纳维解法得到四边简支纳米板振动固有频率的数值解,并将本文研究结果与已有文献结果进行对比,进一步讨论了小尺寸效应,以及纳米板的三维尺寸和半波数对振动频率的影响.结果表明:非局部效应的存在使得纳米板的等效刚度和固有频率降低;半波数的增加则使得纳米板的固有频率提高.相关分析结果对基于二维纳米材料的新设备的设计和优化具有重要意义.  相似文献   

9.
In several settings, diffusive behavior is observed to not follow the rate of spread predicted by parabolic partial differential equations (PDEs) such as the heat equation. Such behaviors, often referred to as anomalous diffusion, can be modeled using nonlocal equations for which points at a finite distance apart can interact. An example of such models is provided by fractional derivative equations. Because of the nonlocal interactions, discretized nonlocal systems have less sparsity, often significantly less, compared with corresponding discretized PDE systems. As such, the need for reduced‐order surrogates that can be used to cheaply determine approximate solutions is much more acute for nonlocal models compared with that for PDEs. In this paper, we consider the construction, application, and testing of proper orthogonal decomposition (POD) reduced models for an integral equation model for nonlocal diffusion. For certain modeling parameters, the model we consider allows for discontinuous solutions and includes fractional Laplacian kernels as a special case. Preliminary computational results illustrate the potential of using POD to obtain accurate approximations of solutions of nonlocal diffusion equations at much lower costs compared with, for example, standard finite element methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The axial vibration of single walled carbon nanotube embedded in an elastic medium is studied using nonlocal elasticity theory. The nonlocal constitutive equations of Eringen are used in the formulations. The effect of various parameters like stiffness of elastic medium, boundary conditions and nonlocal parameters on the axial vibration of nanorods is discussed. It is obtained that, the axial vibration frequencies of the embedded nanorods are highly over estimated by the classical continuum rod model which ignores the effect of small length scale.  相似文献   

11.
将幂函数引入Eringen非局部线粘弹性本构,导出Riesz势形式的应力-应变关系。利用该关系,构造非局部弹簧和非局部阻尼器两类元件;利用元件的串联和并联,建立非局部Kelvin和非局部Maxwell粘弹性模型,推导模型的松弛模量和蠕变柔量。进一步,给出非局部粘弹性模型在生物组织超声波耗散建模中的应用。  相似文献   

12.
On the basis of a simplified system of equations we study the process of development and stability of wave flows in a thin layer of a viscous liquid. Any unstable disturbance of the laminar flow grows and leads to the establishment of the wave regime. The time to establish the flow changes little for large flow rates, but increases sharply with reduction of the flow rate. Given the same amplitudes of the initial disturbances, the optimum regimes which provide the greatest flow rate in a layer of given average thickness develop more rapidly than the other regimes. All the wave regimes are unstable to disturbances in the form of traveling waves. With moderate flow rates, the optimum regimes will be most stable to near-by disturbances.Strictly periodic wave flows in a thin layer of a viscous liquid under the influence of the gravity force were calculated in [1], Various flow wave regimes which differ in wavelength can theoretically be established for a given liquid flow rate. In particular, there is a wavelength for which the flowing layer exhibits minimum average thickness (and maximum flow rate for a given average thickness). These optimum regimes correspond closely to the experimental data [2]; however, with regard to calculation technique these regimes are no different from the others. In the following we make a comparison of the wave regimes on the basis of the nature of their development and stability.  相似文献   

13.
The problem of nonlinear wave dynamics of a fluid-saturated porous medium is investigated. The mathematical model proposed is based on the classical Frenkel--Biot--Nikolaevskiy theory concerning elastic wave propagation and includes mass, momentum, energy conservation laws, as well as rheological and thermodynamic relations. The model describes nonlinear, dispersive, and dissipative medium. To solve the system of differential equations, an asymptotic modified two-scales method is developed and a Cauchy problem for initial equations system is transformed to a Cauchy problem for nonlinear generalized Korteweg--de Vries--Burgers equation for modulated quick wave amplitudes and an inhomogeneous set of equations for slow background motion. Stationary solutions of the derived evolutionary equation that have been constructed numerically reflect different regimes of elastic wave attenuation: diffusive, oscillating, and soliton-like.  相似文献   

14.
We explore the idea that periodic or chaotic finite motions corresponding to attractors in the simplest models of resonant wave interactions might shed light on the problem of pattern formation. First we identify those dynamical regimes of interest which imply certain specific relations between physically observable variables, e.g. between amplitudes and phases of Fourier harmonics comprising the pattern. To be of relevance to reality, the regimes must be robust.The issue of structural stability of low-dimensional dynamical models is central to our work. We show that the classical model of three-wave resonant interactions in a non-conservative medium is structurally unstable with respect to small cubic interactions. The structural instability is found to be due to the presence of certain extremely sensitive points in the unperturbed system attractors. The model describing the horse-shoe pattern formation due to non-conservative quintet interactions [11] is also analyzed and a rich family of attractors is mapped. The absence of such sensitive points in the found attractors thus indicates the robustness of the regimes of interest. Applicability of these models to the problem of 3-D water wave patterns is discussed. Our general conclusion is that extreme caution is necessary in applying the dynamical system approach, based upon low-dimensional models, to the problem of water wave pattern formation.  相似文献   

15.
The asymptotic methods of shell theory are used to study the propagation of axisymmetric waves in blood vessels of constant cross-section. The initial equations are simplified using the assumption that the shell radius is small compared with the wave length. We show that the terms corresponding to the shell inertia cannot be omitted if it is required to describe not only the pressure wave but also the longitudinal wave. We study the influence of external fixation on the pressure wave. In this case, we compare the following two models: in the first model, the ambient medium is modelled by elastic and damping elements uniformly distributed over the shell exterior surface and by additional masses; in the second model, the ambient medium is represented by an infinite elastic space with a cylindrical cavity where the vessel is placed. On the interface between the elastic space and the vessel, we pose the full contact conditions. We show that, from the qualitative standpoint, both models lead to the same result: the pressure wave in the first approximation is a wave in the shell whose walls cannot move in the longitudinal direction. We asymptotically integrate the original equations and hence obtain a one-dimensional equation for the bulk blood flow.  相似文献   

16.
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman–Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.  相似文献   

17.
By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propagation in micro/nanobeams is studied. The formulations of dispersion relation are explicitly derived for both strain gradient beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological sizedependent beam models, the angular frequency, phase velocity and group velocity increase with increasing wave number. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.  相似文献   

18.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

19.
The size-dependent band structure of an Si phononic crystal(PnC) slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT). The three-dimensional(3D) non-classic wave equations for the anisotropic material are derived according to the differential form of the NSGT. Based on the the general form of partial differential equation modules in COMSOL, a method is proposed to solve the non-classic wave equations. The bands of the in-plane ...  相似文献   

20.
This paper is concerned with the bending problem of nanobeams starting from a nonlocal thermodynamic approach. A new coupled nonlocal model, depending on two nonlocal parameters, is obtained by using a suitable definition of the free energy. Unlike previous approaches which directly substitute the expression of the nonlocal stress into the classical equilibrium equations, the proposed approach provides a methodology to recover nonlocal models starting from the free energy function. The coupled model can then be specialized to obtain a nanobeam formulation based on the Eringen nonlocal elasticity theory and on the gradient elastic model. The variational formulations are consistently provided and the differential equations with the related boundary conditions are thus derived. Nanocantilevers are solved in a closed-form and numerical results are presented to investigate the influence of the nonlocal parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号