首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ming Dai  Cun-Fa Gao  C. Q. Ru 《Meccanica》2014,49(12):2847-2859
This paper studies surface tension-induced stress concentration around a nanosized hole of arbitrary shape inside an elastic half-plane. Of particular interest is the maximum hoop stress on the hole’s boundary with relation to the point of maximum curvature and the distance between the hole and the free surface of the half-plane. The shape of the hole is characterized by a conformal mapping which maps the exterior of the hole onto the exterior of the unit circle in the image plane. On using the technique of conformal mapping and analytic continuation, the complex potentials of the half-plane are expressed in a series form with unknown coefficients to be determined by Fourier expansion method. Detailed numerical results are shown for elliptical, triangular, square and rectangular holes. Two basic conclusions are that the hoop stress increases with decreasing hole size and the maximum hoop stress generally appears nearby but not exactly at the point of maximum curvature. In addition, it is shown that the hoop stress nearby the point of maximum curvature on the hole’s boundary increases rapidly with decreasing distance between the hole and the free surface of the half-plane. On the other hand, if the distance between the hole and the free surface is more than three times the hole size, the effect of the free surface on the stress concentration around the hole is ignorable and the elastic half-plane can be treated approximately as an elastic whole plane.  相似文献   

2.
We examine the effect of surface energy on an anisotropic elastic material weakened by an elliptical hole. A closed-form, full-field solution is derived using the standard Stroh formalism. In particular, explicit expressions for the hoop stress, normal, in-plane tangential and out-of-plane displacement components along the edge of the hole are obtained. These expressions clearly demonstrate the effect of elastic anisotropy of the bulk material on the corresponding field variables. When the material becomes isotropic, the hoop stress agrees with the well-known result in the literature while both the in-plane tangential and out-of-plane displacements vanish and the normal displacement is constant along the entire boundary of the elliptical hole.  相似文献   

3.
We study the stress concentration due to a pore in an elastic half-plane, subject to moving contact loading, in the entire range of possible geometrical parameters (contact area/hole diameter, hole depth/hole diameter). Since the number of cases is very large to study with FEM even with modern machines, the use of a recent simple approximate formula due to Greenwood based on the stress field in the absence of the hole is first attempted, and compared with a full FEM analysis in sample cases. To further distillate the effects of the hole distance from the free surface and of the contact area size, the limiting cases are studied of: (i) concentrated load perpendicular to the surface and aligned with the hole centre; (ii) constant unit pressure on the top surface of the half-plane and (iii) hydrostatic load. A full investigation is then conduced for the case of Hertzian load on the surface, and it is seen that the tensile stress concentration is significantly reduced with respect to that of the concentrated load, when the contact area size is of the same order of the hole radius. Results obtained with the approximate Greenwood formula are generally accurate however only if the hole distance from the surface is greater than two times the hole radius.  相似文献   

4.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

5.
Minimizing the stress concentration around holes in uniaxially loaded finite plates is an important consideration in engineering design. One method for reducing the stress concentration around a central circular hole in a uniaxially loaded plate is to introduce smaller auxiliary holes on either side of the original hole to help smooth the flow of the tensile principal-stress trajectories past the original hole. This method has been demonstrated by Heywood and systematically studied by Erickson and Riley. Erickson and Riley show that for a central-hole diameter-to-plate width ratio of 0.222, the maximum stress reduction is up to 16 percent. In recent work, Durelliet al. show that the stress concentrations around holes in uniaxially loaded plates can be minimized by changing the hole shape itself till an optimum hole profile with constant stress values respectively on the tensile and compressive segments of the hole boundary is reached. By this technique the maximum stress reduction obtained for the above case is up to 20 percent. In the present work, starting with the optimum sizes and locations of central and auxiliary circular holes for a finite plate given by Erickson and Riley, a systematic study of the hole-shape optimization is undertaken. A two-dimensional photoelastic method is used. For a central-hole diameter-to-plate width ratio of 0.222, the reduction in stress-concentration factor obtained after hole-shape optimization is about 30 percent. It is also shown that it is possible to introduce the ‘equivalent ellipse’ concept for optimized holes.  相似文献   

6.
0Introduction Photoelasticityisanopticalmeasurementmethodforstressanalysis.Itcanperformwhole field measurementduetotwo dimensionalsignalprocessingoflight.Alsoitcanperformnon contact measurementbecauseoftransmissionorreflectionoflightonaspecimen.Photoelast…  相似文献   

7.
Summary  Within the scope of linear elasticity, the in-plane problem of an anisotropic plate or laminate with a circular hole and an elliptical hole reinforcement is considered. Arbitrary anisotropic elastic stiffnesses are allowed for the base plate and the reinforcement material, and for the reinforcement there is no restriction for its elliptical shape and size. The analysis of the problem is performed by the complex potential method with appropriately chosen series representations inside and outside the reinforcement region. The derived closed-form solution provides all resultant in-plane stresses and deformations within and around the hole reinforcement with little computational effort and at high accuracy. The determined solution allows a proper and effective assessment of hole reinforcements for many technical applications. Received 26 June 2000; accepted for publication 26 September 2000  相似文献   

8.
Using the Schwarz's alternating method and the Muskhelishvili's complex variable function techniques, an efficient and accurate stress solution for an infinite elastic plate around two elliptic holes, subjected to uniform loads on the hole boundaries and at infinity, is presented in this paper. The present algorithm can be used to compute the stress concentration factors (SCF), i.e., the ratio of the maximum tangential hoop stress to the applied uniform load, on the boundaries of the two elliptical holes of different sizes and layouts under different loading conditions, as illustrated in two numerical cases.  相似文献   

9.
The stress field due to a half-plane inhomogeneity with plane eigenstrain is obtained by a limiting procedure from the one of a circular Eshelby inhomogeneity/inclusion. This field, which requires tractions to be applied at infinity to be sustained, has minimum strain energy versus any other superposed homogeneous one, and is the Eshelby solution inside plus the Hill jump conditions. By superposition, the stresses due to an infinite strip (Eshelby property domain) inhomogeneity with eigenstrain are obtained, and, by superposition periodic strips or laminates can be obtained. By cancelling the stresses on a free-surface, strips of inclusions meeting a free surface are solved. They exhibit tensile stresses under the free surface, and logarithmic singularities in the tensile stress at the vertex, which may initiate cracking. The Eshelby self-forces on the boundary of circular and half-plane inhomogeneities are computed.  相似文献   

10.
SINGULAR SOLUTIONS OF ANISOTROPIC PLATE WITH AN ELLIPTICAL HOLE OR A CRACK   总被引:2,自引:1,他引:2  
In the present paper, closed form singular solutions for an infinite anisotropic plate with an elliptic hole or crack are derived based on the Stroh-type formalism for the general anisotropic plate. With the solutions, the hoop stresses and hoop moments around the elliptic hole as well as the stress intensity factors at the crack tip under concentrated in-plane stresses and bending moments are obtained. The singular solutions can be used for approximate analysis of an anisotropic plate weakened by a hole or a crack under concentrated forces and moments.They can also be used as fundamental solutions of boundary integral equations in BEM analysis for anisotropic plates with holes or cracks under general force and boundary conditions.  相似文献   

11.
基于Lagoudas形状记忆合金(SMA)三维本构模型,假设材料为各向同性,推导了SMA平面应力状态的增量型本构方程,继而编写了ABAQUS用户自定义材料(UMAT)子程序,研究了在双向拉伸情况下,外载荷、温度、椭圆孔口长短轴之比对超弹性SMA椭圆孔口板中应力诱发马氏体相变区的影响。数值结果表明:应力诱发马氏体相变首先发生在椭圆孔口长轴端点部位,在外加载荷作用下逐渐扩展到板内,并由内向外形成马氏体相区、相变混合区和奥氏体相区;SMA板内应力诱发马氏体完全相变区面积与施加外载荷成正相关,与温度成负相关;随着椭圆孔口长短轴之比增大,SMA板内应力诱发马氏体完全相变区面积呈现出先减小后增大的趋势;拉应力差值相同时,相较于拉应力沿椭圆孔口长轴方向较大的情况,当拉应力沿椭圆孔口短轴方向较大时,SMA板内完全相变区面积较大,椭圆孔口周边应力集中现象更明显。  相似文献   

12.
应用复变函数Cauchy积分的方法,对含有椭圆孔或裂纹的各向异性平面,系统地导出了当其在面内受任意集中载荷作用时的复应力函数解或裂纹应力强度因子解析解,即基本解;并通过基本解的迭加,得到了在椭圆孔周或裂纹表面作用一般外载时的解,其特例证实了上述解的正确性。  相似文献   

13.
An experimental method is described which can measure the direction and magnitude of residual and applied stress in metals. The method uses optical interference to measure the permanent surface deformation around a shallow spherical indentation in a polished area on the metal specimen. The deviation from circularly symmetrical surface deformations is measured at known values of applied stress in calibration specimens. This deviation from symmetry can then be used to determine the direction and magnitude of tensile residual stress in specimens of the same material. Determination of compressive residual stress is more limited. A model of the indentation process is offered which qualitatively describes experimental results in 4340 steel for both tensile and compressive stress. The model assumes that the deformation around an indentation os controlled by stresses analogous to those around a hole in an elastic plate. Various conditions are discussed which affect the indentation process and its use to measure stress, including (a) the rigidity of support of the indentor and specimen, (b) the size and depth of the indentation, (c) the uniaxial stress-strain behavior of the specimen material.  相似文献   

14.
A three-dimensional photoelastic analysis using the stress freezing and slicing techniques was employed to study the stress distribution and the stress-concentration factors around an elliptical hole in a plate of finite thickness. The plate was subjected to simple out-of-plane bending. A special bending device was designed to produce uniform bending moment at the two opposite free edges of the plate. Six plates with various elliptical holes were studied. The stress variation across the plate thickness at the periphery of the elliptical hole was also investigated. The experimental results were correlated with the existing theoretical solutions.  相似文献   

15.
采用复变函数法,结合"保角映射"技术及Green函数法,研究SH波作用下半空间内含有部分脱胶的椭圆夹杂以及圆形孔洞的散射问题。首先,利用"保角映射"技术将椭圆夹杂映射为圆夹杂,求出散射波位移场,同时,利用Green函数法与"虚设点源"的方法,求出半空间内椭圆夹杂以及圆孔的位移及应力场;然后,根据椭圆夹杂周围位移、应力连续、圆孔周围应力自由的边界条件,建立无穷线性代数方程组,求解出波函数中的未知系数;最后,在脱胶部分施加大小相等、方向相反的应力,构造出"脱胶模型",得到半空间内含有部分脱胶的椭圆夹杂以及圆形孔洞的总位移场。数值算例表明,入射角度、入射波频率、缺陷之间的距离、夹杂埋深及脱胶角度等对动应力集中因子有较大影响。  相似文献   

16.
研究纳米尺度时开裂椭圆孔的III型断裂性能。基于表面弹性理论和保角映射技术,利用复势函数理论获得了缺陷(裂纹和椭圆孔)周围应力场和裂纹尖端应力强度因子的闭合解答。所得结果具有一般性,许多已有和新的解答可由本文退化的特殊情形得到。利用解析结果讨论了缺陷的绝对尺寸、椭圆孔的形状比以及裂纹的相对尺寸对应力强度因子的影响。结果表明:考虑表面效应且缺陷尺寸在纳米尺度时,应力强度因子具有显著的尺寸依赖效应;应力强度因子随椭圆孔形状比的变化规律受缺陷表面常数的影响;缺陷表面效应的影响取决于椭圆孔的形状比,非常大的形状比屏蔽了表面效应的影响;裂纹相对尺寸非常小时表面效应影响较弱,裂纹相对尺寸较大时表面效应较为明显。  相似文献   

17.
Based on the classical laminated plate theory, a finite composite plate weakened by multiple elliptical holes is treated as an anisotropic multiple connected plate. Using the complex potential method in the plane theory of elasticity of an anisotropic body, an analytical study concerned with the stress distributions around multiple loaded holes in finite composite laminated plates subjected to arbitrary loads was performed. The analysis makes use of the Faber series expansion, conformal mapping and the least squares boundary collocation techniques. The effects of plate and hole sizes, layups, the relative distance between holes, the total number of holes and their locations on the stress distribution are studied in detail. Some conclusions are drawn.  相似文献   

18.
Übersicht Für die anisotrope linear-elastische Scheibe unter beliebiger Zugkraft- und Faserorientierung wird analytisch das ebene Spannungs- und Verschiebungsfeld um die elliptische Innenkerbe mittels komplex-wertiger Spannungsfunktionen ermittelt. Dabei dient als mathematisches Modell der (gezogene) Scheibenstreifen unendlicher Breite. Am Beispiel orthotrop glasfaserverstärkter Werkstoffe wird gezeigt, daß die vom isotropen Werkstoff her bekannten Aussagen über das Spannungs- und Verschiebungsverhalten an elliptischen und kreisförmigen Kerben auf anisotrope Werkstoffe nicht übertragbar sind. Insbesondere gilt dies bei Auseinanderklaffen von Last- und Orthotropiehauptrichtung (off-axis-Belastung). Für einige ausgezeichnete Fälle werden die für die Dimensionierung maßgebenden Spannungsüberhöhungsfaktoren in Polardiagrammen dargestellt sowie der Ort der maximalen Spannungsüberhöhung angegeben, der — im Unterschied zum isotropen Werkstoff — i. allg. nicht mehr mit dem Kerbgrund zusammenfällt.
Calculation of the stress and displacement field of anisotropic plates with elliptical hole
Summary The plane stress and displacement field around the elliptical hole of an anisotropic linear elastic plate under arbitary orientation of tension force and fibres is analytically determined by the method of stress functions of a complex variable. For this purpose the infinite plate under uniaxial tension is used as mathematical model. For the example of glass fibre reinforced plastics with orthotropic properties it is shown that the data gathered from isotropic materials on the behaviour of stress and displacement around elliptical and circular holes are not applicable to anisotropic materials. This is especially true when load and orthotropic principal directions (off-axis-load) diverge. For several particular cases, the hole stress concentration factors which are decisive for the design are depicted in polar diagrams. The position of the maximum stress is also given which — in contrast to isotropic materials — generally no longer coincides with the notch base.
  相似文献   

19.
椭圆孔三维应力集中及其对疲劳强度的影响   总被引:1,自引:0,他引:1  
应用有限单元法对有限厚中心椭圆孔板的三维应力集中进行了分析。发现厚板的最大应力集中总是与自由表面保持一固定的距离而不随板厚的增加而变化;椭圆形状因子越小,距离自由表面越近。得到了最大三维应力集中、表面应力集中与相应平面解之间的近似关系和经验公式;研究了厚度对疲劳强度的影响,并给出相应的影响系数。  相似文献   

20.
We use membrane theory to analyze the puncturing of a thin solid circular isotropic elastic sheet by a rigid axisymmetric indenter. A solution is obtained in which a hole is formed at the center of the sheet with an interior annulus in frictionless contact with the cylindrical surface. The contacting part is in a state of pure hoop stress with the corresponding hoop stretch exhibiting a strong singularity at the origin. Conditions are given ensuring that the solution has finite total energy and it is shown to be energetically favored over unpunctured states for transverse indenter displacements exceeding a finite critical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号