首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A solution of the bending problem for a plate with an elliptical hole subjected to a point force (a singular solution) is obtained using the engineering theory of thin anisotropic plates and Lekhnitskiis complex potentials. The solution is constructed by conformal mapping of the exterior of the elliptical hole onto the exterior of a unit circle with evaluation of the Cauchy-type integrals over closed contours. Different versions of the boundary conditions on the holw contour are considered. In the limiting case where the ellipse becomes a slot, the solution describes the bending of a plate with a rectilinear crack or a rigid inclusion.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 144–152, January–February, 2005.  相似文献   

2.
We examine the effect of surface energy on an anisotropic elastic material weakened by an elliptical hole. A closed-form, full-field solution is derived using the standard Stroh formalism. In particular, explicit expressions for the hoop stress, normal, in-plane tangential and out-of-plane displacement components along the edge of the hole are obtained. These expressions clearly demonstrate the effect of elastic anisotropy of the bulk material on the corresponding field variables. When the material becomes isotropic, the hoop stress agrees with the well-known result in the literature while both the in-plane tangential and out-of-plane displacements vanish and the normal displacement is constant along the entire boundary of the elliptical hole.  相似文献   

3.
Summary Within the framework of linear-elastic classical laminated plate theory, the problem of an elliptical hole in an infinitely extended unsymmetric laminate is treated. For the underlying non-symmetric layup arbitrary bending extension coupling is admitted and is taken into account by means of a new complex potential approach. The corresponding analytical solution is given for the case of homogeneous in-plane and bending loading of the laminate. The derived solution describes all essential plate quantities in any vicinity of the elliptical hole and it reveals interesting features of the considered bending extension coupling.
Komplexe Methode für das elliptische Loch in einem unsymmetrischen Laminat
Übersicht Im Rahmen der linear-elastischen klassischen Laminattheorie wird das Problem eines ellipsenförmigen Loches im unendlich ausgedehnten unsymmetrischen Laminat behandelt. Dabei wird ein nicht-symmetrischer Lagenaufbau mit beliebiger Biege-Dehn-Kopplung zugelassen und mittels einer neuen komplexen Methode für den Fall homogener Membranund Biegebelastung die entsprechende analytische Lösung hergeleitet. Die erstellte Lösung beschreibt alle wesentlichen Plattengrößen in einer beliebigen Umgebung des elliptischen Loches und zeigt interessante Eigenheiten der jeweiligen Biege-Dehn-Kopplung.
  相似文献   

4.
The exact solution of the problem of the deflection of an anisotropic plate weakened by an aperture is known only for the case in which the aperture has the shape of a circle or an ellipse [1, 2]. An exact solution has not been derived for any other aperture shapes. Approximate methods [3–6] which are widespread for the case of multiply connected anisotropic plates [7] are applied to the determination of the bending moments in an anisotropic plate near an aperture differing little from an elliptical or circular one.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 168–177, September–October, 1977.  相似文献   

5.
Summary  The problem of a hole at bimaterial interface is of practical importance in providing a good understanding of the debonding phenomenon and for determining factors that affect the mechanical properties of composite elements of structures. The problem of a point dislocation in bending bonded dissimilar semi-infinite plates with an elliptical hole at interface is tackled in this paper. Based on the method of analytic continuation and the rational mapping function technique, the problem of obtaining the stress functions in the upper and lower plates is decoupled, and reduced to two Riemann–Hilbert problems. The closed-form solution is obtained. The stress distributions at the bimaterial interface, as well as the debonding at both vertices of the elliptical hole are studied. The stress intensities of debonding are depicted for various parameters. Received 16 March 2000; accepted for publication 12 July 2000  相似文献   

6.
应用复变函数Cauchy积分的方法,对含有椭圆孔或裂纹的各向异性平面,系统地导出了当其在面内受任意集中载荷作用时的复应力函数解或裂纹应力强度因子解析解,即基本解;并通过基本解的迭加,得到了在椭圆孔周或裂纹表面作用一般外载时的解,其特例证实了上述解的正确性。  相似文献   

7.
We examine the surface tension-induced stress concentration around an elliptical hole inside an anisotropic half-plane with traction-free surface. Using conformal mapping techniques, the corresponding complex potential in the half-plane is expressed in a series whose unknown coefficients are determined numerically. Our results indicate that the maximum hoop stress around the hole (which appears in the vicinity of the point of maximum curvature) increases rapidly with decreasing distance between the hole and the free surface. In particular, for an elliptical or even circular hole in an anisotropic half-plane we find that, with decreasing distance between the hole and the free surface, the hoop stress can switch from compressive to tensile at certain points on the hole's boundary and from tensile to compressive at others. This phenomenon is absent in the case of an elliptical or even circular hole in the corresponding case of an isotropic half-plane.  相似文献   

8.
基于线性压电动力学理论,采用波函数展开法、保角映射以及复变函数,对含非圆孔洞无限大压电薄板弹性波的散射及动应力集中问题进行了分析,给出了其动弯矩集中系数(DMCF)的解析表达式。为说明问题,以PZT-4为例,讨论了外加电场、椭圆孔长短半轴比、椭圆孔倾角以及入射波频率对含圆孔和椭圆孔无限大压电薄板弹性波散射的影响,并分别给出了无限压电薄板开圆孔和椭圆孔动弯矩集中系数的数值结果。  相似文献   

9.
SINGULAR SOLUTIONS OF ANISOTROPIC PLATE WITH AN ELLIPTICAL HOLE OR A CRACK   总被引:2,自引:1,他引:2  
In the present paper, closed form singular solutions for an infinite anisotropic plate with an elliptic hole or crack are derived based on the Stroh-type formalism for the general anisotropic plate. With the solutions, the hoop stresses and hoop moments around the elliptic hole as well as the stress intensity factors at the crack tip under concentrated in-plane stresses and bending moments are obtained. The singular solutions can be used for approximate analysis of an anisotropic plate weakened by a hole or a crack under concentrated forces and moments.They can also be used as fundamental solutions of boundary integral equations in BEM analysis for anisotropic plates with holes or cracks under general force and boundary conditions.  相似文献   

10.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

11.
The stress-strain state of an anisotropic plate containing an elliptic hole and thin, absolutely rigid, curvilinear inclusions is studied. General integral representations of the solution of the problem are constructed that satisfy automatically the boundary conditions on the elliptic-hole contour and at infinity. The unknown density functions appearing in the potential representations of the solution are determined from the boundary conditions at the rigid inclusion contours. The problem is reduced to a system of singular integral equations which is solved by a numerical method. The effects of the material anisotropy, the degree of ellipticity of the elliptic hole, and the geometry of the rigid inclusions on the stress concentration in the plate are studied. The numerical results obtained are compared with existing analytical solutions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 173–180, July–August, 2007.  相似文献   

12.
本文利用变角度复合材料的纤维方向角可沿平面位置任意连续变化的特点,提出在孔附近采用与孔同心的椭圆曲线作为纤维铺设路径的层合板铺层方案,以改善含椭圆孔的层合板的孔边应力集中,进而提高层合板的抗屈曲性能.主要研究内容有:利用ABAQUS软件分析本文提出的孔边特殊铺层方式下变角度复合材料层合板的面内应力分布及屈曲性能,通过与传统直线铺层方式以及线性变角度铺层方式进行比较,说明了本文提出的新铺层方式的优越性,并详细分析了椭圆孔的离心率、开孔尺寸及开孔方位对层合板的屈曲临界荷载的影响.研究结果可为含椭圆孔的变角度复合材料层合板的结构设计和优化提供一定的参考.  相似文献   

13.
We solve the problem of determining the stress-strain state of an anisotropic plate with an elliptic hole and a system of thin rectilinear elastic inclusions. We assume that there is a perfect mechanical contact between the inclusions and the plate. We deal with a more precise junction model with the flexural rigidity of inclusions taken into account. (The tangential and normal stresses, as well as the derivatives of the displacements, experience a jump across the line of contact.) The solution of the problem is constructed in the form of complex potentials automatically satisfying the boundary conditions on the contour of the elliptic hole and at infinity. The problem is reduced to a system of singular integral equations, which is solved numerically. We study the influence of the rigidity and geometry parameters of the elastic inclusions on the stress distribution and value on the contour of the hole in the plate. We also compare the numerical results obtained here with the known data.  相似文献   

14.
A closed-form solution for an arbitrarily laminated, anisotropic plate subjected to uniform loading is presented here for the first time. The theory used is the well-established theory of thin, heterogeneous, anisotropic plates due to Reissner and Stavsky. All components of the stretching, bending-stretching coupling, and bending stiffness matrices are included. The specific geometry considered is an elliptic plate clamped both flexurally and in-plane at its edge.  相似文献   

15.
Within the scope of linear elasticity, an in-plane problem related to the repair of an infinite thin elastic plate with a hole by a patch is considered. The patch and the plate are joined together only along their boundaries. The plate is subjected to stresses applied at infinity. The problem is reduced to a system of four singular integral equations. Existence and uniqueness of the solution of the system is proved. The proposed solution allows one to evaluate the efficiency of a patch repair with little computational effort.  相似文献   

16.
Abstract

Stress intensity factors are evaluated for a singly or doubly cracked fastener hole with frictional traction in an anisotropic plate, using a special kernel boundary integral equation (BIE) approach. The integration kernel (Green's function) used in this BIE approach has already taken the presence of the crack (or cracks) into account, thus.avoiding the need for element discretization to model the stress singularity at the crack tip. The Green's function employed is that of an infinite anisotropic plate containing an elliptical hole or crack, and subjected to an arbitrarily positioned point force. Several types of normal and shear traction conditions at the pinhole interface are considered. Numerical results are obtained for various geometrical and loading conditions and are compared with known solutions, where available, for their isotropic counterparts.  相似文献   

17.
Based on the Stroh-type formalism, we present a concise analytic method to solve the problem of complicated defects in piezoelectric materials. Using this method and the technique of conformal mapping, the problem of two non-symmetrical collinear cracks emanating from an elliptical hole in a piezoelectric solid is investigated under remotely uniform in-plane electric loading and anti-plane mechanical loading. The exact solutions of the field intensity factors and the energy release rate are presented in closed-form under the permeable electric boundary condition. With the variation of the geometrical parameters, the present results can be reduced to the well-known results of a mode-III crack in piezoelectric materials. Moreover, new special models used for simulating more practical defects in a piezoelectric solid are obtained, such as two symmetrical edge cracks and single edge crack emanating from an elliptical hole or circular hole, T-shaped crack, cross-shaped crack, and semi-infinite plane with an edge crack. Numerical results are then presented to reveal the effects of geometrical parameters and the applied mechanical loading on the field intensity factors and the energy release rate.  相似文献   

18.
We study the reinforcement of an infinite elastic plate with a circular hole by a larger eccentric circular patch completely covering the hole and rigidly adjusted to the plate along the entire boundary of itself. We assume that the plate and the patch are in a generalized plane stress state generated by the action of some given loads applied to the plate at infinity and on the boundary of the hole. We use the power series method combined with the conformal mapping method to find the Muskhelishvili complex potentials and study the stress state on the hole boundary and on the adhesion line. We consider several examples, study how the stresses depend on the geometric and elastic parameters, and compare the problem under study with the case of a plate with a circular hole without a patch. In scientific literature, numerous methods for reinforcing plates with holes, in particular, with circular holes, have been studied. In the monographs [1, 2], the problem of reinforcing the hole edges by stiffening ribs is solved. Methods for reinforcing a circular hole by using two-dimensional patches pasted to the entire plate surface are studied in [3, 4]. The case of a plate with a circular cut reinforced by a concentric circular patch adjusted to the plate along the boundary of itself or along some other circle was studied in [5, 6]. The reinforcement of an elliptic hole by a confocal elliptic patch was considered in [7].  相似文献   

19.
含椭圆孔有限大薄板弯曲应力分析   总被引:3,自引:0,他引:3  
利用各向异性体弹性平面理论中的复势方法,以Faber级数为工具,对含椭圆孔有限大各向异性板弯曲问题进行应力分析,得出有限大含椭圆孔各向异性板弯曲的级数解形式,分析了有限大含椭圆孔板在受到弯曲载荷时孔边的应力分布,并讨论了各种参数对应力分布的影响,给出了有益的结论.  相似文献   

20.
An approach is proposed to solve a stress–strain problem for anisotropic rigidly fixed plates on an elastic foundation. The problem is solved by the method of successive approximations. At each approximation, the deflection is represented as polynomials whose coefficients are determined from a system of linear algebraic equations. Study is made of the influence of the reinforcement angle and the modulus of subgrade reaction on the deflections and the bending moments in an orthotropic plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号