首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn-doped ZnO samples having composition Zn1−xMnxO (x=0.02, 0.04 and 0.05) were synthesized by solid state reaction technique with varying concentration of Mn from 0.02 to 0.05. Evidence of room temperature ferromagnetism was observed only in the composition Zn0.98Mn0.02O sintered at 500 °C. Our XRD pattern confirms the presence of Mn3O4 impurity phase in all the Zn1−xMnxO samples with the exception of Zn0.98Mn0.02O. We emphasize that the appearance of Mn3O4 phase in the system forbids the exchange type of interaction between the Mn ions and suppresses the ferromagnetism in all the Mn over-doped Zn1−xMnxO (x>0.02) system. SEM microstructure study also supports the interruption of exchange type of interaction inside the system with the increase in Mn concentration in the sample. Interestingly, for this particular composition, Zn0.98Mn0.02O sintered at 500 °C, glassy ferromagnetism type of transition is observed at low temperature. This type of transition is attributed to the formation of the oxides of Mn clusters at low temperature.  相似文献   

2.
The room-temperature ferromagnetism is observed in Zn0.98Mn0.02O nanoparticles, which is related to the host-lattice defects induced by doping Mn. The ferromagnetism in Zn0.95Mn0.05O nanoparticles can be suppressed by Mn clusters. The additional peak at 519 cm?1 is observed in Raman scattering spectra of the Zn1?xMnxO nanoparticles associated with intrinsic host-lattice defects, which become activated due to the Mn doping. The decrease in band gap and the weak intensity of absorption peak in the nanoparticles may be due to the sp–d interaction between transition metal and Zn anions.  相似文献   

3.
Perovskite types Ba1−xCaxTi0.6Zr0.4O3 (with x=0.0-0.5) ceramics have been prepared through solid state reaction route. The room temperature XRD study suggests the compositions with x=0.0 and x=0.1 have single phase cubic symmetry. With further increase in Ca content, solid solution breaks and an orthorhombic CaTiO3 like phase is developed. The dielectric study on single phase compositions (x=0.0 and 0.1) reveals that the materials are of relaxor type and undergo a diffuse type ferroelectric phase transition. In the Ca containing composition higher transition temperature is observed than the pure BaTi0.6Zr0.4O3 materials. In the paraelectric region (above Tc) lower diffusivity is observed in the Ca containing composition. The strength of relaxation is calculated and found to be more in Ca containing material than that of pure BaTi0.6Zr0.4O3 composition.  相似文献   

4.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

5.
The effect of Zn and Ti substitution on the magnetic and electrical properties of Li0.5ZnxTixMn0.05Fe2.45−2xO4 ferrites (x=0.0 to 0.30 in steps of 0.05) +0.5wt% Bi2O3 prepared by a standard ceramic technique has been investigated. Electrical conductivity and dielectric measurements at different temperatures from 300 K to 700 K in the frequency range from 100 Hz to 2 MHz have been analysed. The variation of the real part of dielectric constant (ε) and loss tangent (tanδ) with frequency and temperature has been studied; it follows the Maxwell–Wagner model based on the interfacial polarization in consonance with the Koops phenomenological theory. It is found that the permittivity of zinc and titanium substituted lithium ferrite improves and shows a maximum value ( 1.5×105) at 100 Hz for the x=0.25 sample. The dielectric transition temperature (Td) depends on the concentration of Ti and Zn in Li0.5ZnxTixMn0.05Fe2.45−2xO4. The saturation magnetization and Curie temperature both decrease with increase in the concentration of Ti and Zn in the ferrite.  相似文献   

6.
Neutron-diffraction and magnetic measurements have been used in order to study the structure and magnetic changes of La0.7Sr0.3Mn1−xTixO3 (x=0, 0.10, 0.20, and 0.30) perovskites. Magnetic measurements show that our samples exhibit a ferromagnetic–paramagnetic transition with decreasing temperature. Effects of Ti doping on the magnetic and nuclear structures are studied here by neutron-powder-diffraction for La0.7Sr0.3Mn1−xTixO3 (x=0.10, 0.20, and 0.30). Our analysis indicates that the three representative samples, with x=0.10, 0.20, and 0.30, have a hexagonal system of R3¯c space group, and that the magnetic moments order ferromagnetically into the (1 0 1) crystallographic planes, i.e. the magnetic moments of the Mn ion are in the ac plane, with no component along the b-axis. There is no crystalline structure changes when the Ti doping level increases.  相似文献   

7.
The influences of Mn doping on the structural quality of the ZnxMn1−xO:N alloy films have been investigated by XRD. Chemical compositions of the samples (Zn and Mn content) and their valence states were determined by X-ray photoelectron spectrometry (XPS). Hall effect measurements versus temperature for ZnxMn1−xO:N samples have been designed and studied in detail. The ferromagnetic transitions happened at different TC should explain that the magnetic transition in field-cooled magnetization of Zn1−xMnxO:N films at low temperature is caused by the strong p-d exchange interactions besides magnetic transition at 46 K resulting from Mn oxide, and that the room temperature ferromagnetic signatures are attributed to the uncompensated spins at the surface of anti-ferromagnetic nano-crystal of Mn-related Zn(Mn)O.  相似文献   

8.
Uniform and transparent thin films of Zn1−xMnxO (0?x?0.10) were fabricated by a sol-gel spin coating method. XRD results indicated the hexagonal structure of ZnO as the primary phase at all concentrations (x) of Mn. However, at x?0.035, Mn3O4 (tetragonal) is observed as the secondary phase, which was confirmed by selected-area electron diffraction patterns. SEM and TEM results showed a tendency of grains to arrange into wire-shaped morphologies, leading to elongated needle-like structures at high Mn addition. Increasing Mn content in the range 0?x?0.10 led to quenching of photoluminescence, increase in the band gap (Eg) from 3.27 to 3.33 eV, and increase in film thickness, refractive index and extinction coefficient of Zn1−xMnxO thin films. The residual stress evaluated was compressive in all cases and found to increase by an order of magnitude with addition of Mn. Furthermore, an overall increase in microhardness and yield strength of Zn1−xMnxO thin films at higher Mn concentrations is attributed to change in microstructures, presence of secondary phase and increase in film thickness.  相似文献   

9.
The elastic, inelastic, and dielectric properties of the magnetoelectric composite xPbZr0.53Ti0.47O3-(1 ? x)Mn0.4Zn0.6Fe2O4 (PZT-MZF) are studied in the temperature range from room temperature to 673 K. The influence of the ferroelectric PZT phase on the magnetic phase transition and the magnetic MZF phase on the ferroelectric phase transition is revealed. It is established that, as the PZT content increases, the degree of diffuseness of the phase transition decreases and a gradual crossover from a pronounced relaxor behavior to a more ordered ferroelectric behavior occurs.  相似文献   

10.
This paper reports the experimental investigations on the effect of La3+ and Ta5+ substitution on the structural characteristics and dielectric and piezoelectric properties of lead calcium titanate (PCT) ceramic. The PCT samples with A-site and B-site substitution having the composition formula Pb0.76−x/2LaxCa0.24(Ti0.98Mn0.02)1−x/2O3 and Pb0.76Ca0.24Mn0.02Ti 0.98−5x/4TaxO3, x=0 and 0.02, respectively, were prepared using conventional solid-state reaction method. Phase formation and structural analysis were studied using X-ray diffraction and scanning electron microscopy, respectively. Dielectric constant (ε′) and loss tangent (tan δ) as a function of frequency were measured at room temperature as well as elevated temperature. Both ε′ and tan δ decreased with increase in frequency at room temperature. Curie temperature decreased with La and Ta doping in PCT ceramics due to a decrease in the tetragonality of PCT ceramics. Piezoelectric charge coefficients (d33, d31) increased with La3+ substitution due to reorientation of the grains and decreased with Ta5+ substitution because of the increase in porosity. Figure of merit dhgh increased and decreased with La and Ta substitution, respectively. A good ferroelectric behaviour is obtained for La substitution, while no hysteresis is obtained for Ta substitution.  相似文献   

11.
This study reports the structural and magnetic properties of spinel systems Li4Mn5−xTixO12 (“4-5-12” series) and LiNi0.5Mn1.5−xTixO4 (“LNMTO” series), both based on Mn4+ substitution by Ti4+. Intermediate compositions covering the whole range of compositions (0≤x≤5 and 0≤x≤1.5, respectively) were prepared by solid state reaction. The 4-5-12 system forms a continuous spinel solid solution, whereas the spinel phase range in LNMTO stops before the end member “LiNi0.5Ti1.5O4”, which is multi-phased with a major hexagonal phase component. Cell parameters and (Mn,Ti)-O distances increase monotonically with titanium content in both series. In the LNMTO series, the end member LiNi0.5Mn1.5O4 is known to form a superstructure with Ni/Mn cation ordering. Neutron diffraction and Raman spectroscopy show that this order is lost when Ti is substituted, even at low level (x=0.15). The LNMTO crystal chemistry is also complicated by the presence of partial cation inversion, and the presence of a secondary rocksalt-type phase that modifies the spinel stoichiometry. Magnetic properties are characterized by a competition between ferromagnetic and antiferromagnetic interactions; no magnetic ordering is achieved, in agreement with B-site cation frustration and disorder. Electrochemical measurements show that the Ti3+/4+ and Mn3+/4+ redox couples behave independently in the 4-5-12 series, and that titanium decreases the high-potential electrochemical redox activity of LNMTO because of its blocking character for electron transfer to and from the nickel sites in the spinel structure.  相似文献   

12.
《Current Applied Physics》2018,18(9):1001-1005
The effect of indium doping on structural and magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22 (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) prepared by the solid state reaction method was investigated. The Rietveld refinement method was used to analyze the X-ray diffraction patterns. The magnetic transition temperatures associated with the proper-screw spin phase to the collinear ferrimagnetic spin phase transition can be efficiently modulated by varying indium content. The magnetic transition temperature increases to a maximum with indium content x = 0.04 and then decreases with x, suggesting the possibility that electrically controlled magnetization reversal can be can be effectively tailored by varying indium content. The saturation magnetization at room temperature was decreased as increasing indium content, which can be explained as the metal ions occupation. It is worthy to note that the coercivity of In-doped samples was decreased drastically compared that of undoped sample, which is probably resulted from the reduction in anisotropy field with substitution of In3+ for Fe3+. The In-doped hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22 may be potential candidates for application in magnetoelectric devices.  相似文献   

13.
《Current Applied Physics》2018,18(2):150-154
The electronic structure and magnetic properties of polycrystalline BaTi1-xMnxO3 (x = 0–0.1) compounds prepared by solid-state reactions were studied. The results revealed that the increase in Mn content (x) did not change the oxidation numbers of Ba (+2) and Ti (+4) in BaTi1-xMnxO3. However, there is the change in Mn valence that Mn3+,4+ ions coexist in the samples with x = 0.01–0.04 while Mn4+ ions are almost dominant in the samples with x = 0.06–0.1. We also point out that Mn3+ and Mn4+ ions substitute for Ti4+ and prefer locating in the tetragonal and hexagonal BaTiO3 structures, respectively, in which the hexagonal phase constitutes soon as x = 0.01. Particularly, all the samples exhibit room-temperature ferromagnetism. Ferromagnetic order increases with increasing x from 0 to 0.02, but decreases as x ≥ 0.04. We think that ferromagnetism in BaTi1-xMnxO3 is related to lattice defects and/or exchange interactions between Mn3+ and Mn4+ ions.  相似文献   

14.
Ba0.7−xSr0.3MnxTiO3 (x = 0, 0.025, 0.05) thin films have been prepared on copper foils using sol-gel method. The films were processed in an atmosphere with low oxygen pressure so that the substrate oxidation is avoided and the formation of the perovskite phase is allowed. XRD and SEM results showed that Mn doping enhanced the crystallization of the perovskite phase in the films. The Mn substitution prevents the reduction of Ti4+ to Ti3+, which is supported by XPS analysis. The Ba0.7−xSr0.3MnxTiO3 film with x = 0.025 (BSMT25) exhibits preferred dielectric behavior and a lower leakage current density among the three thin films. The dielectric constant and loss of the BSMT25 film are 1213.5 and 0.065 at 1 MHz and around zero field, which are mostly desired for embedded capacitor applications. The mechanism of Mn doping on improving the electrical properties of barium strontium titanate (BST) thin films was investigated.  相似文献   

15.
Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn1?xMnxO nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zni) and oxygen interstitial (Oi) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (OZn) and oxygen vacancy (Vo) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s–d and p–d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content.  相似文献   

16.
The effects of non-magnetic Ti4+ substitution on the structural, electrical and magnetic properties of La0.67Ba0.33Mn1?x Ti x O3 (0≤x≤0.1) are investigated and compared to those existing in La0.67Ba0.33Mn1?x Cr x O3 (magnetic Cr3+). The structural refinement by the Rietveld method revealed that Ti-doped samples crystallize in the cubic lattice with space group $\mathrm{Pm}\bar{3}\mathrm{m}$ , while samples with Cr crystallize in the hexagonal setting of the rhombohedral $\mathrm{R}\bar{3}\mathrm{C}$ space group for identical contents of dopant. The most relevant structural features are an increase of the lattice parameters, of the cell volume and of the inter-ionic distances with increasing Ti doping level. Both series of samples show a decrease of the paramagnetic–ferromagnetic transition temperature when the amount of chromium or titanium increases. Transport measurements show that when increasing the metal doping, the resistivity increases whereas the metallic behavior of the parent compound La0.67Ba0.33MnO3 is destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a semiconducting behavior in the whole range of temperature, for which the electronic transport can be explained by variable range hopping and/or small polaron hopping models.  相似文献   

17.
Single-phase polycrystalline samples of La0.67Ca0.33Mn1−xO3 (x=0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1−xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained in the La0.67Ca0.33Mn0.98O3 sample. The entropy change reaches |ΔSM|=3.10 J kg−1 K−1 at its Curie temperature (264 K) under an applied magnetic field H=10 kOe, which is almost the same value as that of pure Gd.  相似文献   

18.
The modifications in electrical and magnetic properties of polycrystalline bulk La0.7Ca0.3Mn1−xTxO3 (T=Fe, Ga) samples at relatively higher doping concentration (x=0.08-0.12) are investigated. All the synthesized, single phase samples were subjected to resistivity measurements in the temperature range 50-300 K. No insulator-metal transition (TP) was observed for Fe doped samples with x=0.12. For all the other samples the transition temperature decreased with increase in doping concentration. The small polaron hoping energy was found to increase, rather slowly, with increase in doping concentration. The effect on magnetic properties is also prominently observed with respect to doping element and doping concentration. Interestingly, with the increase in doping concentration, the Curie temperature (TC) and TP separate out significantly indicating decoupling of electric and magnetic properties. Changes in these properties have been analyzed on the basis of magnetic disorder introduced in the system due to the magnetic and nonmagnetic nature of these ions rather than strong lattice effects which is insignificant due to similar ionic radii of Fe+3 and Ga+3 when compared to that of Mn+3.  相似文献   

19.
Mn-doped NiCuZn ferrites with compositions of (Ni0.2Cu0.2Zn0.6)O(Fe2−x,MnxO3)0.98 (x=0, 0.02, 0.04, 0.06) were prepared by a novel sol–gel auto-combustion process. The synthesized nano-sized ferrite powders can be sintered at 900°C, and the sintered ferrites are characterized by fine-grained microstructural feature and high permeability. Mn content in formulations largely affects the grain size and main electromagnetic properties of sintered NiCuZn ferrites. With increasing Mn content, the initial permeability is significantly increased, while the electrical resistivity and quality factor are decreased. The dielectric constant and dissipation factor are also affected by the incorporation of MnO2. The possible mechanism for the influence of MnO2 on the electromagnetic properties was discussed.  相似文献   

20.
Magnetic properties have been investigated on Mn doped TiO2(Ti0.98Mn0.02O2) bulk samples prepared by solid state reaction, which were sintered at different temperature ranging from 450 °C to 900 °C in air and argon atmosphere, respectively. The results show that the magnetic properties were strongly dependent on the sintering temperature and atmosphere. For samples sintered in air, the magnetization initially increase with the increase of sintering temperature up to 600 °C and thereafter it decrease. While the magnetization of samples sintered in argon atmosphere decreases monotonically with the increase of sintering temperature. Furthermore, for samples sintered at 600 °C in air, the magnetic susceptibility exhibits a dominant Curie-Weiss behaviour and no magnetic transition is observed over the temperature range from 10 to 300 K. In contrast, for samples sintered in argon atmosphere, besides the magnetic transition near 45 K perhaps caused by Mn3O4, another magnetic transition appears near room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号