首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

2.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

3.
Ideal conditions during electrocrystallization, which are only approximately attainable, would lead to a perfect single crystal, whereas real conditions yield a monocrystalline or polycrystalline product containing many structural defects. The electrolytic production of quasi-ideal single crystals requires an overpotential that supplies at least the activation energy necessary for the formation of two-dimensional nuclei, since growth otherwise proceeds via screw dislocations with formation of a “real” crystal. The potential deviation in electrocrystallization under real conditions is due to electrochemical and/or crystallization overpotential, which can be determined separately. The investigation of electrocrystallization also offers possibilities for a systematic study of the formation of imperfections in real crystals.  相似文献   

4.
Development of orientation-induced precursor structures (nuclei) prior to crystallization in isotactic polypropylene melt under shear flow was studied by in-situ synchrotron small-angle X-ray scattering (SAXS) and rheo-optical techniques. SAXS patterns at 165°C immediately after shear (rate = 60 s−1, ts = 5 s) showed emergence of equatorial streaks due to oriented structures (microfibrils or shish) parallel to the flow direction and of meridional maxima due to growth of the oriented layer-like structures (kebabs) perpendicular to the flow. SAXS patterns at later times (t = 60 min after shear) indicated that the induced oriented structures were stable above the nominal melting point of iPP. DSC thermograms of sheared iPP samples confirmed the presence of two populations of crystalline fractions; one at 164°C (corresponding to the normal melting point) and the other at 179°C (corresponding to melting of oriented crystalline structures). Time-resolved optical micrography of sheared iPP melt (rate = 10 s−1, ts = 60 s, T = 148°C) provided further information on orientation-induced morphology at the microscopic scale. The optical micrographs showed growth of highly elongated micron size fibril structures (threads) immediately after shear and additional spherulities nucleated on the fibrils at the later stages. Results from SAXS and rheo-optical studies suggest that a stable scaffold (network) of nuclei, consisting of shear-induced microfibrillar structures along the flow direction superimposed by layered structures perpendicular to the flow direction, form in polymer melt prior to the occurance of primary crystallization. The scaffold dictates the final morphological features in polymer.  相似文献   

5.
张洪斌 《高分子科学》2010,28(4):657-666
<正>The effect of pre-shear flow on the subsequent crystallization process of polymeric melt was investigated and a flow-induced crystallization(FIC) model based on the conformation tensor incorporating the pre-shear effect was proposed. The model is capable of predicting the overshoot phenomena of the stress and the flow-induced free energy change of the polymeric system at high pre-shear rates.Under the condition of flow,the increase in the activated nuclei number was contributed by the flow-induced free energy change,which showed an overwhelming effect on the nuclei formation during the pre-shear process at high shear rates.The half crystallization time(f_(1/2)) of polypropylene(PP) as functions of pre-shear rate and pre-shear time at different crystallization temperatures was predicted and compared with the experiment data.Both numerical and experimental results showed that t_(1/2) of PP decreased dramatically when the flow started but leveled off at long times.It was found that two transformation stages in t_(1/2) existed within a wide range of shear rates.For the first stage where the melting polymer experienced a relatively weak shear flow,the acceleration of crystallization kinetics was mainly contributed by the steady value of free energy change while in the second stage for high shear rates,strong overshoot in flow-induced free energy change occurred and the crystallization kinetics was thus significantly enhanced.The overshoots in stress and flow-induced free energy change reflected an important role of flow on the primary nucleation especially when the flow was strong enough.  相似文献   

6.
The long spacing l of lamellar crystals of linear polyethylene increases with the crystallization temperature Tc. For low degrees of supercooling, the ratio ΔlT is around 0.5 nm K?1 for PE single crystals obtained from solution in xylene. In the restricted situation where only conduction in the crystallization vessel is involved, a heat transfer analysis shows that about 20 s is needed to change by 5 K the crystallization temperature Tc in a cylindrical vessel of 1.5 mm radius. Such rapid change of the crystallization temperature induces a sharp increase or decrease of the thickness of the single crystals. After conventional shadowing with palladium–gold alloy, the steps on the crystals are observed by conventional bright-field electron microscopy. A pioneering work was performed in this way by Bassett and Keller in 1962. Our technique allows one to determine both the shape and the dimensions of single crystals or twinned crystals of polyethylene as a function of the time of crystallization, and therefore give the quasi-instantaneous growth rates at various times.  相似文献   

7.
The realization of hierarchical shish‐kebab structures for stereocomplex poly(lactic acid) (PLA) is achieved by the application of a shear flow (100 s–1 for 1 s) mimicking what can be expected during polymer processing. Compared to the normal shearing scenarios, this transient and strong shear flow enables the creation of dense shish precursors in time‐ and energy‐saving manner. The distribution of crystal form associated with the hierarchical structure is revealed by 2D Fourier transform infrared spectroscopy imaging, creating a unique visualization for both spatial resolution and polymorphism identification. Interestingly, in the shear stereocomplex chains are preferentially extended and crystallized as stable central cores with weak temperature dependence, whereas the development of lateral kebabs is defined by the distinct relation to the crystallization temperature. Below the melting point of homocrystals, both homo and stereocomplex crystallization are engaged in lamellar packing. Above that, exclusive stereocomplex crystals are organized into ordered lamellae. Combining the direct observations at multiscale, the ordered alignment of stereocomplex chains is recognized as the molecular origin of fibrillar extended chain bundles that constitute the central row‐nuclei. The proposed hypothesis affords elucidation of shish‐kebab formation and unique polymorphism in sheared stereocomplex PLA, which generates opportunities for engendering hierarchically structured PLA with improved performance.

  相似文献   


8.
Extruded, injection-molded, unoriented crystallized specimens and capillary rheometer efflux strands of commercially stabilized polypropylene without nucleating agents were examined by optical microscopy and x-ray diffraction to determine the conditions for β-form crystallization as a function of the distance from the surface and of the shear rate at commercial processing conditions. Results demonstrate that at all “cooling conditions” ΔT = Tm ? Tb (defined as the melt temperature Tm minus the bath temperature Tb) effects of strain flow initiate nucleation of β-form crystals. The shear rate is demonstrated to be important for β-form crystallization. A critical average threshold value for the shear rate of approximately 3 × 102 sec?1 has to be exceeded. The β modification is mostly connected with type-III spherulites and partly to row structures, and it is observed at processing conditions in oriented structures only.  相似文献   

9.
Time dependent viscosity of concentrated alumina suspensions   总被引:4,自引:0,他引:4  
Viscometric investigations of concentrated aqueous alumina suspensions with particles smaller than 5 μm have been performed. Experimental flow curves indicate thixotropy in the shear rate interval between =20 and 640 s−1. In the range smaller than =200 s−1 we found pseudoplastic flow behavior, in the higher range the material shows dilatancy. The non-Newtonian behavior results from a small content of sodium aluminum oxide in the alumina suspension. This gives rise to interparticle forces that can drive the suspension into a gel-like state. The time scale of this process is some days. On the short-time scale of some hours the material ages slowly increasing moderately the apparent viscosity. Studying the relaxation process after a shear rate jump, the shear stress time dependency at constant shear rate follows an exponential law. There is a single particular relaxation time for each shear rate. The relaxation towards a steady state occurs asymptotically over some 103 s. Flow curves calculated from steady state data after relaxation processes are below the experimental flow curves which were measured during some 100 s. The flow curves follow the Herschel–Bulkley formula. The shape of the viscosity curves indicates changes of suspension structure at ca. =200 and 400 s−1. At constant shear rates in the interval between =400 and 450 s−1 the apparent viscosity of the alumina suspension fluctuates periodically in time in the same manner found for other suspensions. This effect is interpreted as periodic organization of agglomeration and deglomeration processes. Supposing, that the stabilisation energy of agglomerates is of the order of the energy introduced by the mechanical shear field, the observation of oscillations at =400 s−1 is in agreement with the drastic slope change in the viscosity curves.  相似文献   

10.
Increasing the efficiency of disperse phase crystallization is of great interest for melt emulsion production as the fraction of solidified droplets determines product quality and stability. Nucleation events must appear within every single one of the μm-sized droplets for solidification. Therefore, primary crystallization requires high subcooling and is, thus, time and energy consuming. Contact-mediated nucleation is a mechanism for intensifying the crystallization process. It is defined as the successful nucleation of a subcooled liquid droplet induced by contact with an already crystallized droplet. We investigated contact-mediated nucleation under shear flow conditions up to shear rates of 457 s−1 for a quantitative assessment of this mechanism. Rheo-nuclear magnetic resonance was successfully used for the time-resolved determination of the solids fraction of the dispersed phase of melt emulsions upon contact-mediated nucleation events. The measurements were carried out in a dedicated Taylor–Couette cell. The efficiency of contact-mediated nucleation decreased with increasing shear rate, whereas the effective second order kinetic constant increased approximately linearly at small shear rates and showed a linear decrease for shear rates higher than about 200 s−1. These findings are in accordance with coalescence theory. Thus, the nucleation rate is optimal at specific flow conditions. There are limitations for successful inoculation at a low shear rate because of rare contact events and at a high shear rate due to too short contact time.  相似文献   

11.
Shear-induced isothermal crystallization in iPP based nanocomposites with organo-modified montmorillonite was followed by light depolarization technique. Prior to the crystallization, samples were sheared at 1 or 2 s−1 for 10 s in a plate-plate system at crystallization temperature of 136 °C. Structure of the solidified specimens was investigated by light microscopy and electron microscopy, X-ray techniques and IR spectroscopy. Strong enhancement of the nucleation and crystallization after shearing was observed in the compatibilized nanocomposites with the clay. Clay exfoliation was found to accelerate strongly the shear-induced nucleation and overall crystallization. However, the sheared samples exhibited only weak orientation of α crystals with (0 4 0) crystallographic planes parallel to shearing direction that resulted probably from a small population of oriented crystals that formed due to shear-induced orientation of iPP chains and served as nuclei for further nearly isotropic growth.  相似文献   

12.
The precipitation behavior of 1,1-di(p-hydroxyphenyl)cyclohexane (DHC) from acetone solutions containing d-Limonene (1-methyl-4(I-methylethenyl)cyclohexene) was studied. From the pure acetone solution or the solutions containing a small amount of d-Limonene crystals (B) precipitated, which clathrate only acetone with a guest/host (G/H) molar ratio of 1.0. However, when thed-Limonene concentration is increased to more than ca. 2 mol/L, crystals (A) precipitated which had a different habit from the B crystals. In the A crystalsd-Limonene is clathrated together with a large amount of acetone and the G/H value ofd-Limonene increases with the concentration in the solution up to the maximum value of 0.2. As the diffraction patterns of the A and B crystals are similar, it is assumed that a part of the acetone molecules in the B crystals are replaced byd-Limonene molecules. The acetone in the A crystals escapes rapidly, but thed-Limonene remains for a long time. This may indicate that the large molecule ofd-Limonene cannot diffuse rapidly within the host lattice owing to three-dimensional hindrance. It was clear that the solubility of the A crystals is higher than that of the B crystals and the transformation from the'metastable A to the stable B crystals proceeds during the crystallization of A crystals.  相似文献   

13.
Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but this is difficult to realize. Now a self‐reporting strategy is presented for visualizing the crystallization process by a dyed self‐assembled inhibitor made from the copolymers with tri(ethylene glycol)‐grafting polymethylsiloxane as the main chain and poly(N6‐methacryloyl‐l ‐lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide the complete separation process of two enantiomers with colorless crystals as the first product and red crystals as the second. This method leads to high optical purity of d /l ‐Asn?H2O (99.9 % ee for d ‐crystals and 99.5 % for l ‐crystals) in a single crystallization process. It requires a small amount of additives and shows excellent recyclability.  相似文献   

14.
Polymer melts submitted to local shear flow fields, as well as isotropic solid samples, were treated in the melt at different temperatures and for various duration of time. The effects of thermal history on kinetics and morphological characteristics of subsequent isothermal crystallization was investigated. Results suggest that subcritical pseudocrystalline aggregates, behaving as predetermined athermal nuclei when temperature is brought below melting point, can survive in the melt for long time. Their concentration decays exponentially with a single characteristic relaxation time. For all investigated polymers, temperature dependence of relaxation times can be fitted by an Arrhenius law with high apparent activation energy. Experiments performed with narrow molecular weight fractions of poly(ethylene oxide) suggest that relaxation times relevant to destruction of oriented nucleation precursors are proportional to M1,5.  相似文献   

15.
Summary: Shear‐induced crystallization in a blend of isotactic poly(propylene) and poly(ethylene‐co‐octene) (iPP/PEOc) has been investigated by means of in‐situ optical microscopy and a shear hot stage under various thermal and shear histories. Cylindrites are observed after shear in the phase‐separated iPP/PEOc blends for the first time. The nuclei (shish) come from the orientation of the entangled network chains, and the relationship between the shear rate and the network relaxation time of the oriented iPP chains is a very important factor that dominates the formation of the cylindrites after liquid‐liquid phase separation. The cylindrites can grow through phase‐separated domains with proper shear rate and shear time. In addition, the number of spherulites increases with shear rate, which is consistent with the notion of fluctuation‐induced nucleation/crystallization.

Phase‐contrast optical micrograph of the iPP/PEOc = 50/50 (wt.‐%) sample sheared during cooling with shear rate of 10 s−1 and isothermally crystallized at 140 °C for 142 s after isothermal annealing at 170 °C for 420 min. The shear time is 180 s.  相似文献   


16.
Combined in situ rheo-SAXS (small-angle X-ray scattering) and -WAXD (wide-angle X-ray diffraction) studies using couette flow geometry were carried out to probe thermal stabilty of shear-induced oriented precursor structure in isotactic polypropylene (iPP) at around its normal melting point (162 °C). Although SAXS results corroborated the emerging consensus about the formation of “long-living” metastable mesomorphic precursor structures in sheared iPP melts, these are the first quantitative measures of the limiting temperature at which no oriented structures survive. At the applied shear, rate = 60 s−1 and duration ts = 5 s, the oriented iPP structures survived a temperature of 185 °C for 1 h after shear, while no stable structures were detected at and above 195 °C. Following Keller's concepts of chain orientation in flow, it is proposed that the chains with highly oriented high molecular weight fraction are primarily responsible for their stability at high temperatures. Furthermore, the effects of flow condition, specifically the shear temperature, on the distributions of oriented and unoriented crystals were determined from rheo-WAXD results. As expected, at a constant flow intensity (i.e., rate = 30 s−1 and duration, ts = 5 s), the oriented crystal fraction decreased with the increase in temperature above 155 °C, below which the oriented fraction decreased with the decrease in temperature. As a result, a crystallinty “phase” diagram, i.e., temperature versus crystal fraction ratio, exhibited a peculiar “hourglass” shape, similar to that found in many two-phase polymer–polymer blends. This can be explained by the competition between the oriented and unoriented crystals in the available crystallizable species. Below the shear temperature (155 °C), the unoriented crystals crystallized so rapidly that they overwhelmed the crystallization of the oriented crystals, thus depleting a major portion of the crystallizable species and increasing their contribution in the final total crystalline phase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3553–3570, 2006  相似文献   

17.
Cloud point temperatures (Tcp) and crystallization temperatures (Tl/s) of the ternary system tetrahydronaphthalene/poly(ethylene oxide)/poly(dimethyl siloxane-b-ethylene oxide) have been measured at different constant shear rates using a rheo-optical device and an advanced rheometer. The cloud points temperatures (UCST-type phase diagram) are reduced by several degrees as the system flows; i.e. the shear can suppress the phase separation and enlarge the homogenous region. The crystallization kinetics of PEO in the ternary mixtures has been investigated isothermally and non-isothermally at quiescent state and under shear. The shear could strongly enhance the crystallization i.e. the (Tl/s) shifts to higher temperatures and the induction time, t0 (the time needs for the onset of crystallization) substantially decreases with increasing shear rate during the non-isothermal and isothermal crystallization processes, respectively. The isothermal crystallization kinetics at quiescent state and at different shear rates was analyzed on the bases of Avrami approach. The Avrami exponent which provides qualitative information about the nature of the nucleation and growth process, was found to be shear rate and temperature dependent. The Avrami exponent increased from ∼3 at the quiescent state to as large as 9 at &&ggr;dot; = 100 s−1.  相似文献   

18.
The crystallization behavior of the blends of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOc) under quiescent condition and shear flow were studied by differential scanning calorimetry (DSC) and rheology, respectively. The DSC curves of the iPP phase in the blends showed similar crystallization exothermic peaks to that of pure iPP itself, indicating that the addition of PEOc up to a percentage of 30 in weight almost had no influence on the crystallization behavior of iPP at quiescent condition. The rheological results of isothermal flow-induced crystallization (FIC) of iPP in the blends showed that the crystallization kinetics of iPP was enhanced with the increase of shear rate, similar to that of pure iPP, but the presence of PEOc enhanced the effect of shear on the crystallization kinetics of iPP significantly in the cases of shear rates larger than 0.2 s−1, which was due to that PEOc played an important role to promote the nucleation of iPP. The rheological results also implied that the characteristic relaxation times of blends were longer than that of pure iPP during the FIC process, indicating a different relaxation mechanism which might be related to the occurrence of interface relaxation and chain relaxation of the PEOc phase in the blends.  相似文献   

19.
The flow-induced crystallization behavior of nanocomposites, containing isotactic poly(1-butene) (PB) and functionalized multi-walled carbon nanotubes (MWNT), was investigated. Three different MWNT concentrations (0.1, 1, 5 wt%) were used to prepare the nanocomposites. Effects of MWNT and shear flow on the crystallization parameters were evaluated separately. Rheological measurements based on oscillatory shear revealed induction time and crystallization half-time at the quiescent state, where both parameters exhibited the nucleating effect of MWNT on PB. Rheological measurements based on steady-state shear flow and short-time shear flow revealed the evolution of molecular orientation, which was studied in both PB and its nanocomposites. A small increase in crystallization kinetic was recorded in PB under shear having moderate values of the Weissenberg (We) number. On the other hand, a dramatic synergistic effect of MWNT and shear was detected under the same shear conditions for nanocomposites. The optical microscopic images exhibited a clear transition from isotropic to row-like morphology in the case of nanocomposites under shear.  相似文献   

20.
Sorbitol derivatives, the conventional α-nucleating agents of isotactic polypropylene (iPP), are discovered to induce β-phase iPP under normal crystalline conditions. Combined effects of shear flow and sorbitol derivatives on the crystallization of iPP were investigated by using differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering. In the nucleation stage, sorbitol derivatives induce both α- and β-nuclei, while shear flow and the interactions between shear and sorbitol derivatives enhance the amount of α-nuclei. In the growth stage, the epitaxial growth of β-crystals on shear-induced α-row nuclei occurs. As the shear rate increases, more epitaxial β-crystals form due to the increase of α-row nuclei, further increasing the content of β-crystals. Under high shear rate, the presence of sorbitol derivatives and shear flow exhibit a synergistic interaction on increasing the content of β-crystals. Moreover, α-nuclei, which arise from the interaction between shear and sorbitol derivatives, emerge earlier than shear-induced α-row nuclei.
Figure
The β-phase crystallinity Xβ in iPP and iPP/MDBS blends with different MDBS concentrations changes with the shear rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号