首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Polyol Metal Complexes. 17. Crystalline Iron(III) Complexes with Twofold Deprotonated Anhydroerythritol Ligands Three new crystalline ferrates(III) with diolato ligands derived from anhydroerythritol by deprotonation have been synthesized from wet alcoholic and from aqueous solution. Almost colourless, monoclinic crystals of Na2[Fe(AnEryt-H-2)2(OH)] · 0.5 NaNO3 · 3.5 H2O ( 1 ) have been prepared from ethanolic solutions. They content mononuclear bis diolato hydroxo ferrate(III) dianions. Trinuclear hexakis diolato μ3-methoxo triferrat(III) tetraanions constitute the anionic part of Na4[Fe3(AnErytH-2)6(OMe)] · 2.5 NaNO3 ( 2 ), yellow-green hexagonal crystals of which are formed from wet methanolic solutions. Yellow-green triclinic crystals of Ba2[Fe2(AnEryt-H-2)4(μ-OH)2] · 12 H2O ( 3 ) have been precipitated from aqueous solutions. In 3 , the anions of 1 are dimerized to give tetrakis diolato di-μ-hydroxo diferrat(III) tetraanions.  相似文献   

2.
Investigation of the Hydrolytic Build‐up of Iron(III)‐Oxo‐Aggregates The synthesis and structures of five new iron/hpdta complexes [{FeIII4(μ‐O)(μ‐OH)(hpdta)2(H2O)4}2FeII(H2O)4]·21H2O ( 2 ), (pipH2)2[Fe2(hpdta)2]·8H2O ( 4 ), (NH4)4[Fe6(μ‐O)(μ‐OH)5(hpdta)3]·20.5H2O ( 5 ), (pipH2)1.5[Fe4(μ‐O)(μ‐OH)3(hpdta)2]·6H2O ( 7 ), [{Fe6(μ3‐O)2(μ‐OH)2(hpdta)2(H4hpdta)2}2]·py·50H2O ( 9 ) are described and the formation of these is discussed in the context of other previously published hpdta‐complexes (H5hpdta = 2‐Hydroxypropane‐1, 3‐diamine‐N, N, N′, N′‐tetraacetic acid). Terminal water ligands are important for the successive build‐up of higher nuclearity oxy/hydroxy bridged aggregates as well as for the activation of substrates such as DMA and CO2. The formation of the compounds under hydrolytic conditions formally results from condensation reactions. The magnetic behaviour can be quantified analogously up to the hexanuclear aggregate 5 . The iron(III) atoms in 1 ‐ 7 are antiferromagnetically coupled giving rise to S = 0 spin ground states. In the dodecanuclear iron(III) aggregate 9 we observe the encapsulation of inorganic ionic fragments by dimeric{M2hpdta}‐units as we recently reported for AlIII/hpdta‐system.  相似文献   

3.
Polyol Metal Complexes. 27. Bis-Diolato Antimonates(III ) with Guanosine as the Diol The complex anions of K3[SbIII(Guo1,2′,3′H?3)2] · 10 H2O ( 1 ) and [Co(NH3)6][SbIII(Guo1,2′,3′H?3)2] · 9 H2O ( 2 ) are four-coordinate homoleptic bis(diolato)antimonate(III ) species. The guanosine trianions act as carbohydrate ligands through their cis-furanoidic ribosyl moiety, thus forming no nucleobase–metal bonds.  相似文献   

4.
Crystallographic analysis has provided evidence for single cation frameworks formed from preordered cation positions in the individual building blocks (modules) constituting the basis of structures. We propose to call this phenomenon coherence assembly. According to the mechanical wave concept of the crystalline state, coherence assembly dictates the rules of mutual packing of “rigid” structural fragments. This study investigates the typical structures of heteropolyniobates: Na12[Ti2O2][SiNb12O40]·4H2O (I), menezesite Ba2MgZr4[BaNb12O42]·12H2O (II), and the menezesite-isostructural aspedamite □12(Fe3+,Fe2+)3Nb4·[Th(Nb,Fe3+)12O42]·(H2O,OH)12 (III).  相似文献   

5.
The title compound, {[Ba3(CHCl2O6P2)2(H2O)4]·H2O}n or {[Ba3(Cl2CP2O6H)(H2O)4]·H2O}n, is two‐dimensional. The asymmetric unit contains three independent Ba2+ atoms, two chelating and bridging Cl2CP2O6H3− ligands and four aqua ligands, connected in layers parallel to the (100) plane. There are pores between the layers in the direction of the b axis filled with lattice water mol­ecules.  相似文献   

6.
The coordination chemistry of the water soluble phosphane oxide ligand tris[2‐isopropylimidazol‐4(5)‐yl]phosphane oxide, 4‐TIPOiPr, has been explored. A variety of 3d‐metal halide complexes have been prepared and the crystal structures of the solvates [(4‐TIPOiPr)ZnCl2]·MeOH·1/2dioxane ( 1 ·MeOH·1/2dioxane), [(4‐TIPOiPr)CoCl2]·H2O·2dioxane ( 2 ·H2O·2dioxane) and [(4‐TIPOiPr)2Ni(MeOH)2]Cl2·2MeOH ( 3 ·2MeOH) have been determined. All three structures show unprecedented coordination modes of the 4‐TIPOiPr ligand. Both zinc and cobalt complexes are coordinated in a bidentate κ2N fashion, whereas the nickel atom is coordinated by two ligands in a κN,O mode using one imidazolyl substituent and the P=O oxygen atom.  相似文献   

7.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

8.
The thermal behaviour of four coordination compounds (NH4)6[Y3Fe5(C4O5H4)6(C4O5H3)6]·12H2O, (NH4)6[Y3Fe5(C6O7H10)6(C6O7H9)6]·8H2O, (NH4)6[Er3Fe5(C4O5H4)6(C4O5H3)6]·10H2O and (NH4)6[Er3Fe5(C4O6H4)6(C4O6H3)6]·22H2O has been studied to evaluate their suitability for garnet synthesis. The thermal decomposition and the phase composition of the resulted decomposition compounds are influenced by the nature of metallic cations (yttrium-iron or erbium-iron) and ligand anions (malate or gluconate).  相似文献   

9.
Four diiron dithiolate complexes with monophosphine ligands have been prepared and structurally characterized. Reactions of (μ-SCH2CH2S-μ)Fe2(CO)6 or [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 with tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine in the presence of Me3NO·2H2O afforded diiron pentacarbonyl complexes with monophosphine ligands (μ-SCH2CH2S-μ)Fe2(CO)5[P(4-C6H4Cl)3] (1), (μ-SCH2CH2S-μ)Fe2(CO)5[Ph2P(2-C5H4N)] (2), [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), and [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[Ph2P(2-C5H4N)] (4) in good yields. Complexes 14 were characterized by elemental analysis, 1H NMR, 31P{1H} NMR and 13C{1H} NMR spectroscopy. Furthermore, the molecular structures of 14 were confirmed by X-ray crystallography.  相似文献   

10.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

11.
Reaction of Na2[PdCl4] with the sodium salt of 5,5-diethylbarbituric acid (barbH) led to the formation of two complexes, [PdNa2(μ-barb)4(DMSO)2]·2H2O·DMSO (1), and {[PdNa2(μ-barb)4(H2O)]·3H2O}n (2). The complexes were characterized by elemental analysis, FT-IR, NMR, and X-ray crystallography. Complex 1 was crystallized from H2O/DMSO (1?:?1, v?:?v) and 2 was crystallized in H2O. Both complexes contain square planar [Pd(barb)4]2? moieties, in which Pd(II) is coordinated by four barb ligands via the negatively charged nitrogens. In addition to the coordination of a DMSO ligand, two Na(I) ions in 1 are bridged by carbonyl O of four barb ligands in the [Pd(barb)4]2? unit, while the Pd(II) and Na(I) ions in 2 are bridged by the barb ligands in a tetradentate bridging fashion leading to a 2-D polymeric network. The bridging of metal centers in both complexes result in a significantly short Na?Pd distance of ca. 2.95 Å. Contrary to 2, the coordination of DMSO to Na(I) in 1 avoids the extension of the polymeric structure.  相似文献   

12.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

13.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   

14.
The formation of magnetically active polynuclear FeIII pivalates in the FeSO4·7H2O-KOOCCMe3 system was studied. The reaction of FeSO4·7H2O (1) with KOOCCMe3 in EtOH in air afforded the antiferromagnetic trinuclear complex [Fe3O(OOCCMe3)6(H2O)3]+[OOCCMe3]·3EtOH. A change of the solvent (EtOH) in this system to a 40:1 benzene—THF mixture resulted in the formation of the antiferromagnetic hexanuclear cluster [Fe6(O)2(OH)2(OOCCMe3)12(HOOCCMe3)(THF)]·1.5C6H6. The addition of trimethylacetic acid to EtOH and recrystallization from hexane gave rise to the antiferromagnetic coordination polymer [K2Fe4(O)2(OOCCMe3)10(HOOCCMe3)2(H2O)2]n (7). Recrystallization of the latter from acetonitrile afforded the antiferromagnetic tetranuclear complex K2Fe4(O)2(OOCCMe3)10(HOOCCMe3)2(MeCN)2. The structures of these compounds were established by X-ray diffraction analysis, and their magnetic susceptibilities and thermal decomposition were investigated.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2403–2413, November, 2004.  相似文献   

15.
The compounds (NMe4)5[As2Mo8V4AsO40] · 3 H2O 2a , (NH4)21[H3Mo57V6(NO)6O183(H2O)18] · 65 H2O 3a , (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18] · 14 H2O 3b and (NH4)12[Mo36(NO)4O108(H2O)16] · 33 H2O 4a ( 3a and 4a were not correctly reported in the literature regarding to their composition, structures and the oxidation states of the metal centres) which contain large isolated anionic species, have been prepared (among them 3a, 3b , and 4a in rather high yield) and characterized by complete crystal structure analysis as well as IR/Raman, UV/VIS/NIR, ESR spectroscopy and magnetic susceptibility measurements, redox titrations, bond valence sum calculations, elemental analyses and thermogravimetric studies. Perspectives for polyoxometalate chemistry referring to the synthesis of “extremely” large nanoscaled species are discussed, together with the occurrence of a large transferable {Mo17} building block in the compounds 3a, 3b and 4a which also exists in the corresponding iron compound Na3(NH4)12[H15Mo57Fe6(NO)6O183(H2O)18] · 76 H2O 7a .  相似文献   

16.
Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O ( 1 ). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri‐sodium salt Na3[Ce(oda)3]·9H2O ( 2 ) is isolated. Formation of a tri‐ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O ( 3 ). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1 . However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] ( 4 ). Each of these complexes exhibit a 3‐D network structure having a common nine‐coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1 , six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2 , displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen‐bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2‐D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.  相似文献   

17.
The complexes (NH4)2[MoO2(C2H2O3)2]·H2O, (NH4)2[MoO2(C8H6O3)2] and (NH4)2[MoO3(C4H4O6)]·H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X-ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO? is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the α-carbon. The glycolate molybdenum complexes with general formula M2[MoO2(C2H2O3)2nH2O, where M is an alkali metal and n?=?1 or ½, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV-radiation.  相似文献   

18.
The behaviour of FeII and FeIII ions in combination with the potential ligand 1,4‐bis(2‐pyridyl‐methyl)piperazine (BPMP) under anhydrous conditions has been investigated. BPMP has been reacted with FeCl2, FeCl3 and [Fe(OTf)2(MeCN)2]. This led to the isolation of four new complexes, which were fully characterized and structurally investigated by single crystal X‐ray diffraction. It turned out that in the presence of chloride co‐ligands FeIII favours the tetradentate coordination mode of BPMP with the piperazine unit in a boat configuration, like for instance in [BPMP(Cl)Fe(μ‐O)FeCl3] or [BPMP‐FeCl2][FeCl4], ( 1 ). However, the employment of FeCl2 leads to the formation of a coordination polymer [BPMP‐FeCl2]n, ( 2 ), containing the piperazine ring in a chair configuration binding to two iron centres each. 2 can only be dissolved in very polar solvents like dmf which is capable of breaking up the polymeric structure under formation of [Cl2(dmf)Fe(μ‐BPMP‐1κ2N,N:2κ2N,N))Fe(dmf)Cl2]·2 dmf, ( 3 ). In contrast, using [Fe(OTf)2(MeCN)2] instead of FeCl2 as the starting material leads to a mononuclear FeII complex with BPMP bound in the desirable tetradentate fashion: [BPMP‐Fe(OTf)2], ( 4 ). Unlike other complexes with tetradentate N/py ligands the two residual ligands in 4 are bound almost trans to each other with the potential to adopt a cis orientation under oxidising conditions, and it will be interesting to exploit its catalytic properties in future.  相似文献   

19.
Pyridine fused with a furan ring (fupy), and its di­methyl derivative, have been used for the first time as ligands to synthesize potentially new Werner clathrates. The extended aromatic system of pyridine‐like ligands influences considerably the molecular structure of prepared nickel complexes. The molecular structure of tetrakis­(furo­[3,2‐c]­pyridine)­bis(iso­thio­cyanato)­nickel(II) tetra­hydro­furan (THF) solvate, [Ni(NCS)2(C7H5NO)4]·C4H8O or [Ni(NCS)2(fupy)4]·THF, (I), reveals a `four‐blade propeller' arrangement of ligands, with the angles between the fupy planes and the basal octahedron plane spanning the range 38.7–55.3°. These angles are much larger (69.9–78.8°) in the centrosymmetric complex tetrakis(2,3‐di­methyl­furo­[3,2‐c]­pyridine)­bis­(iso­thio­cyanato)nickel(II) 6.6‐hydrate, [Ni(NCS)2(C9H9NO)4]·6.6H2O or [Ni(NCS)2(Me2fupy)4]·6.6H2O, (II), in which crystallographically imposed inversion symmetry is present.  相似文献   

20.
Characterization of Distortional Isomers of the Anions Pentacyano-oxo-molybdate(IV) and of Tetracyano-aqua-oxo-molybdate(IV) in the Solid State. Crystal Structures of [(C6H5)4P]3[MoO(CN)5] · 7 H2O (green), [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue), and [(C6H5)4P]2[MoO(OH2) (CN)4] · 4 H2O (green) Preparation of a series of salts containing the new pentacyano-oxo-molybdate(IV) anion is described: Cs2H[MoO(CN)5] (blue), [(CH3)4N]2H[MoO(CN)5] · 2 H2O (blue) and [Cr(en)3] [MoO(CN)5] · 4 H2O (green). The green [(C6H5)4P]3[MoO(CN)5] · 7 H2O crystallizes triclinic in the space group P1 . The molybdenum(IV) center is in an pseudo-octahedral environment of a terminal oxo-group (d(Mo?O); 1.705(4) Å), a CN? group in the trans-position (d(Mo? C): 2.373(6) Å), and four equatorial CN? groups (averaged d(Mo? C): 2.178 (Å). The blue and green salts exhibit v(Mo?O) stretching frequencies at 948 cm?1 and 920 cm?1, respectively. Blue and green salts containing the [MoO(OH2)(CN)4]2? anion and [(C6H5)4P]+ or [(C6H5)4As]+ cations have been prepared and characterized by single crystal crystallography. [(C6H5)4P]2[MoO(OH2)(CN)4] · 4 H2O (green) and [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue) crystallize monoclinic in the space group C—P21/n. They are considered to be distortional isomers of the complex anion: the green species has a Mo?O bond distance of 1.72(2) Å whereas for the blue species d(Mo?O) = 1.60(2) Å is found; the corresponding v(Mo?O) frequencies are at 920 cm?1 and 980 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号