首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
3,6-和2,7-咔唑衍生物单光子和双光子吸收性质的理论研究   总被引:1,自引:1,他引:0  
采用密度泛函理论B3LYP方法以及ZINDO/SDCI方法计算3,6-和2,7-咔唑衍生物的分子平衡几何结构、电子结构及单光子和双光子吸收性质.乙烯基吡啶取代基的位置影响分子的单光子和双光子吸收性质.与3,6-咔唑衍生物相比,2,7-咔唑衍生物的单光子吸收波长红移,振子强度增大;双光子吸收波长红移,双光子吸收截面增加.结果表明,2,7-咔唑衍生物是更好的双光子吸收材料.  相似文献   

2.
采用非线性透过率法测定了多枝[1,3,4]-噁二唑衍生物的双光子吸收性质. 测定了化合物的单光子荧光光谱和双光子荧光光谱, 在800 nm波长的激光激发下, 9-乙基-3,6-双{5-(4-叔丁基苯基)-[1,3,4] 噁二唑-2-苯乙烯基}-咔唑(3)和三-{5-(4-叔丁基苯基)-[1,3,4] 噁二唑-2-苯乙烯基-4-苯基}-胺(4)能够发出很强的蓝色和黄绿色双光子上转换荧光, 荧光峰分别位于485和547 nm. 这些多枝结构化合物的双光子吸收截面较大(数值超过104 GM), 并具有很强的光限幅效应. 多枝分子中重复单元的推拉电子结构和协同效应有效地增强了分子的双光子吸收性质.  相似文献   

3.
以咔唑为原料,通过乙酰化反应合成了2-乙酰基咔唑(2)和3,6-二乙酰基咔唑(5);2和5分别与2-氨基二苯甲酮衍生物在酸催化下通过典型的Frledl(a)ender环化反应合成了一系列新的2-(4-取代苯基)喹啉咔唑和3,6-二(4-取代苯基)喹啉咔唑,其结构经1H NMR,IR和元素分析表征.  相似文献   

4.
2,3-二羟基-10-溴吲哚[3,2-a]咔唑(1)是一种从海绵体中提取的具有多种潜在生物活性的天然海洋生物碱.本文作者以3,6-二溴吲哚(2)与5,6-二乙酰氧基吲哚(3)为原料,经过酸催化偶联、分子间成环两步关键反应构建吲哚[3,2-a]咔唑母核;所构建的吲哚[3,2-a]咔唑母核在碱性条件下水解脱去酚羟基上的酯基,即得到目标化合物1,总收率为48%.  相似文献   

5.
合成了一种新的双β-二酮化合物--N-正丁基-3,6-(1,3-丁二酮基)咔唑(2),其结构经1H NMR,MS,IR和元素分析表征.并研究了2的电子吸收光谱.  相似文献   

6.
以苯和二联苯单元为核,分别在其1,4位和4,4'(对位)引入噻吩-咔唑单元,设计合成了9,9'-(1,4-亚苯基)双[3,6-双(2-噻吩)]-9-氢-咔唑(BTCPh)和9,9'-[1,1'-联苯基]-4,4'-二取代基双[3,6-双(2-噻吩)]-9-氢-咔唑(BTCBPh)2种化合物;再通过电化学聚合得到相应的交联结构聚合物,分别为聚9,9'-(1,4-亚苯基)双[3,6-双(2-噻吩)]-9-氢-咔唑(p BTCPh)和聚9,9'-[1,1'-联苯基]-4,4'-二取代基双[3,6-双(2-噻吩)]-9-氢-咔唑(p BTCBPh)薄膜.利用循环伏安法(CV)、多电位阶跃、紫外-可见-近红外(UV-Vis-NIR)吸收光谱和扫描电子显微镜(SEM)等手段对其进行了表征与电化学性能测试.结果表明,2种聚合物均表现出良好的电化学性质、相似的颜色变化、较高的光学对比度及电化学循环稳定性等优异的电致变色性质.p BTCPh聚合物薄膜比p BTCBPh表现出更快的响应速度,这可能是由于前者具有更加均匀规整的堆积结构,有利于变色过程中的离子嵌入与脱出所致.  相似文献   

7.
新型吡唑基咔唑衍生物的合成及其光学性质   总被引:1,自引:0,他引:1  
以咔唑为原料,合成了一种新型的咔唑衍生物--9-丁基-3,6-二[3'-(5'-三氟甲基)吡唑基]咔唑(4),其结构经1H NMR,IR和MS表征.运用UV和单光子荧光光谱研究了中间体和4的光学性质,结果表明:4有望成为具有应用价值的发光材料.  相似文献   

8.
利用N-乙基咔唑和2-甲基蒽醌合成了一种A-π-D-π-A分子内电荷转移型化合物3,6-二(蒽醌-2-乙烯基)-N-乙基咔唑,并对该化合物的光化学和光物理行为进行了研究。荧光光谱表明,该化合物的发光行为对溶剂的极性非常敏感,随着溶剂极性的增大,其荧光最大发射峰有明显红移,并在强极性溶剂乙腈中出现了双荧光现象。该化合物的激发态和基态的偶极矩差值△μ为3.014D,发生了从给体(咔唑基)的N原子到分子两端受体(蒽醌)的羰基的分子内电荷转移。  相似文献   

9.
咔唑分子经SN1烷基化、Friedle-crafts双乙酰化和Claisen缩合3步反应,合成了一种新颖的双β-二酮化合物9-乙基-3,6-二(3-苯基-1,3-丙二酮基)咔唑,对其结构进行了元素分析、IR、1H NMR和MS表征.研究了中间体和目标化合物的吸收光谱性质,采用密度泛函理论在B3LYP/6-31G*水平上对目标化合物基态结构进行优化,运用含时密度泛函理论在相同水平上计算了吸收光谱数据,从微观上分析了化合物的电子跃迁行为.  相似文献   

10.
本文以稳态荧光光谱、紫外-可见吸收光谱、荧光偏振、热变性、阴离子猝灭等手段,研究了一种具有强电荷转移能力的化合物2,7-二[(N-乙基咔唑-3-基)丙烯-1-酮基]芴与DNA的相互作用。研究结果表明,2,7-二[(N-乙基咔唑-3-基)丙烯-1-酮基)芴与DNA的作用方式是混合模式,以嵌插作用为主,同时存在沟槽相互作用,其咔唑基团可能插入到DNA的碱基对之间,结合常数K为8 123.48mol/L,结合位点n为0.71。该发光探针灵敏度高,结合稳定。  相似文献   

11.
分别合成了2,7-双(1-羟乙基-4-乙烯基吡啶) 咔唑碘盐(2,7-BHVC)与3,6-BHVC, 进行了荧光性能和细胞核成像测试, 结果表明, 2,7位的Ф×δ是3,6位的2.8~3.6倍, 染色实验也证实了2,7-BHVC有特定成像细胞核的能力.  相似文献   

12.
咔唑双乙酰化衍生物的合成及其电子光谱   总被引:1,自引:0,他引:1  
以咔唑为原料,通过SN1亲核取代和Friedel-Crafts亲电取代反应合成了咔唑双乙酰化衍生物——3,6-二乙酰基-N-乙基咔唑和3,6-二乙酰基-N-丁基咔唑,其结构经1H NMR,IR,MS和元素分析表征,并讨论了它们的电子吸收光谱。  相似文献   

13.
The PMR spectra are presented of some N-vinylcarbazoles (NVC) i.e. of 3-halogeno-NVC, 3-nitro-NVC, 3,6-dihalogeno-NVC, 3,6-dinitro-NVC, 1,3,6-trihalogeno-NVC and 1,3,6,8-tetra-halogeno-NVC. The chemical shifts show that in both tri- and tetra-substituted NVC derivatives the rotation of the vinyl group is strongly restricted. This group occupies a plane perpendicular to the carbazole ring and this conclusion is substantiated by the UV-VIS absorption spectra of selected NVC derivatives.  相似文献   

14.
Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-linked carbazole trimers, two conjugated oligomers with different linkages of carbazole, were studied by the density functional theory with Becke-Lee-Young-Parr composite exchange correlation functional (B3LYP). The absorption spectra of these compounds were also investigated by time-dependent density functional theory (TD-DFT) with 6-31G* basis set. The calculated results indicated that the HOMO and LUMO of the 2,7- and 3,6-linked carbazole trimers are both slightly destabilized on going from methyl substitution to sec-butyl substitution. Both IP and EA exhibit their good hole-transporting but poor electron- accepting ability. The presence of alkyl groups on the nitrogen atoms does not affect the intra-chain electronic delocalization along the molecular frame. Thus no significant effect on the band gap and absorption spectra of compounds has been found.  相似文献   

15.
This paper reports the synthesis, photophysical behavior, and use in nanosecond optical-pulse suppression of a poly(2,7-carbazole-alt-2,7-fluorene) and a poly(3,6-carbazole-alt-2,7-fluorene) in which the carbazole N-positions are linked by an alkyl chain to one of the nitrogen atoms of a perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. It was found that the PDI pendants on the polymer side chain aggregated even in dilute solution, which extended the onset of PDI absorption into the near-infrared (NIR). Transient-absorption spectra of these polymers provide evidence for efficient electron transfer following either donor or acceptor photoexcitation to form long-lived charge-separated species, which exhibit strong absorption in the NIR. The spectral overlap between the transient species and the long-wavelength absorption edge of the aggregated PDI leads to reverse saturable absorption at 680 nm that can be used for optical-pulse suppression. Additionally, at high input energies, two-photon absorption mechanisms may also contribute to the suppression. PDI-grafted polymers exhibit enhanced optical-pulse suppression compared with blends of model materials composed of unfunctionalized poly(carbazole-alt-2,7-fluorene)s and PDI small molecules.  相似文献   

16.
The mechanism of inhibition of telomerase by drugs is a key factor in an understanding of guanine-quadruplex complex stabilization during human cancer. This study describes a simulated annealing docking and molecular dynamics simulation to investigate a synthesized potent inhibitor, 3,6-bis(1-methyl-4-vinylpyridinium iodine) carbazole (BMVC), which stabilizes the quadruplex structure of the human telomeric DNA sequence d[AG3(T(2)AG(3))3] and inhibits telomerase activity. The compound was predicted to selectively interact with the quadruplex structure. During our simulation, the binding affinities were calculated and used to predict the best drug-binding sites as well as enhanced selectivity compared with other compounds. Our studies suggest that the simulation results quite coincide with the experimental results. In addition, molecular modeling shows that a 2:1 binding model involving the external binding of BMVC to both ends of the G-quartet of d[AG(3)(T(2)AG)3))3] is the most stable binding mode and this agrees with the absorbance titration results that show two binding sites. Of particular interest is that one pyridinium ring and carbazole moiety of the BMVC can stack well at the end of G-quartet. This implies that BMVC is a good human quadruplex stabilizer and also a good telomerase inhibitor.  相似文献   

17.
We report the optical and electroluminescent properties of four novel poly(aryl ether)s ( P1 – P4 ) consisting of alternate isolated hole‐transporting [carbazole or 3,6‐bis(styryl)carbazole] and electron‐transporting [dicyano‐p‐quaterphenyl or bis(trifluoromethyl)‐p‐quaterphenyl] fluorophores. The photoluminescence (PL) spectra of the four polymeric films show maximum peaks around 407–413 nm for P1 , P2 and 442–447 nm for P3 , P4 . The PL spectra of P1 ~ P4 are dependent on the composition of the two isolated fluorophores. According to the observation of relative quantum yield in poor solvent (cyclohexane), P2 containing more bulky trifluoromethyl groups in p‐quaterphenyl segments prevented aggregate quenching processes more than P1 . Compared with P1 and P2 with carbazole segments, P3 and P4 with 3,6‐bis(styryl)carbazole segments exhibited less interchain interaction and a low threshold electric field in a single‐layer device. The p‐quaterphenyl and carbazole [or 3,6‐bis(styryl)carbazole] segments were regarded as electron‐transporting and hole‐transporting units, respectively, in the single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO). In the double‐layer device (ITO/MEH‐PPV/ P2 /Al), the maximum luminance was doubled, and the threshold electric fields diminished because P2 functioned as an electron‐transporting and hole‐blocking layer. Furthermore, the voltage‐tunable multicolor emission from orange to green was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 333–340, 2004  相似文献   

18.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

19.
We performed time-resolved spectral investigations of two distyrylcarbazole derivatives, 2,7- and 3,6-distyrylcarbazole (2,7-DPVTCz and 3,6-DPVTCz, respectively), in dilute toluene solution and in solid films mixed with poly(methyl methacrylate) (PMMA). The lifetime of 2,7-DPVTCz in its excited state in solution is approximately 100 times as great as that of 3,6-DPVTCz, consistent with their photophysical nature. The former shows intense emission, but the latter is nearly nonfluorescent in a free environment. Moreover, the lifetime of 3,6-DPVTCz in its excited state increased also approximately 100 times when the molecule was encapsulated in a 3,6-DPVTCz/PMMA solid film, indicating that intramolecular motion of the molecule significantly affects the observed relaxation dynamics in a confined environment. Calculations on the excited states indicate that an efficient intersystem crossing is activated upon twisting of the bridged C-C single bond in a free 3,6-linked carbazole; such efficient deactivation is impractical in 2,7-linked carbazole or for 3,6-linked carbazole in a PMMA matrix. Information obtained from experiments on femtosecond fluorescence enables us to distinguish crucial relaxation processes in the excited state for a profound understanding of the details of vibrational and electronic relaxations of 3,6-DPVTCz in solution.  相似文献   

20.
A partially hydrophobic carbazole ligand ((Im+)2Cz: 2,2′‐(9‐ethyl‐9 H‐carbazole‐3,6‐diyl)bis(ethyne‐2,1‐diyl)bis(1,3‐dimethyl‐1 H‐imidazol‐3‐ium)) adopts two different binding states (binding states I and II) in its interactions with calf‐thymus (ct‐) DNA. Two distinct binding states were identified by biphasic UV/Vis and circular dichroism (CD) spectral changes during the titration of DNA into the carbazole ligand. At low concentrations of ct‐DNA, (Im+)2Cz binds to nearly every part of ct‐DNA (binding state I). By contrast, an increased concentration of ct‐DNA results in a switch in the DNA‐binding state, so that the ligands are bound per five DNA base pairs. Similarly, a monocationic carbazole ligand (Im+Cz: 2‐((6‐bromo‐9‐ethyl‐9 H‐carbazol‐3‐yl)ethynyl)‐1,3‐dimethyl‐1 H‐imidazol‐3‐ium) also shows biphasic UV/Vis spectral changes during the titration of ct‐DNA into Im+Cz, which suggests two different binding states of the Im+Cz ligand with ct‐DNA. The stepwise equilibrium of the ligand–DNA‐complex formation is capable of switching the thermal stability of ct‐DNA, as well as the enzymatic activity of deoxyribonuclease (DNase I). In binding state I, the (Im+)2Cz ligands interact with nearly every base pair in ct‐DNA and stabilize the double‐helix structure, which results in a larger increase in the melting temperature of the ct‐DNA than that observed with binding state II. On the other hand, the (Im+)2Cz ligand significantly reduces the enzymatic activity of DNase I in binding state I, although the enzymatic activity is recovered once the binding state of the ligand–DNA complex is changed to binding state II. The (Im+)2Cz ligand was also employed as a binder for G‐quadruplex DNA. In contrast to the stepwise complex formation between (Im+)2Cz and ct‐DNA, (Im+)2Cz shows a monotonous UV/Vis spectral response during the titration of G‐quadruplex DNA into (Im+)2Cz, which suggests a single binding state for (Im+)2Cz with G‐quadruplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号