首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
The anisotropic mechanical properties of the thermoplastic elastomer (TPE) in situ reinforced with thermotropic liquid‐crystalline polymer (TLCP) fibers were investigated by uniaxial, strip‐biaxial, and equibiaxial tensile measurements. The in situ composite sheets were prepared from an immiscible blend of a TLCP, Rodrun LC3000, and a TPE, styrene‐(ethylene butylene)‐styrene (SEBS) triblock copolymer, by a melt extrusion process. The uniaxial orientation of the TLCP fibers in the TPE matrix generated during processing yielded a significant mechanical anisotropy in the composites. The biaxial tensile measurements clearly demonstrated the anisotropic mechanical properties of the composites: The modulus in the direction parallel to the machine direction (MD) was considerably higher than that in the transverse direction (TD), even at large deformations; in equibiaxial stretching, the yield strain in the MD was smaller than that in the TD; the composite containing 10 wt % of TLCP exhibited the highest mechanical anisotropy among the composites, with 0–30 wt % TLCP. The latter result was in accord with the SEM observation that the composite with 10 wt % of TLCP possessed the best fibrillar morphology and the highest degree of uniaxial orientation of the TLCP fibers. The yield strains in uni‐ and biaxial elongation for the composite containing 10 wt % of TLCP were almost the same as those for the neat styrene‐ethylene butylene‐styrene. The TLCP phase with good fibrillation did not appreciably alter the original yielding characteristics of the elastomer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 135–144, 2005  相似文献   

2.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight.  相似文献   

3.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

4.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.

The effects of various compatibilizers on thermal, mechanical and morphological properties of 50/50 polypropylene/polystyrene blends were investigated. Various compatibilizers, polystyrene-(ethylene/butylenes/ styrene) (SEBS), ethylene vinyl acetate (EVA), polystyrene-butylene rubber (SBR) and blend of compatibilizers SEBS/PP-g-MAH, EVA/PP-g-MAH, and SBR/PP-g-MAH were used. Differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray scattering, scanning electron microscopy, microhardness, and Izod impact strength were adopted. It was found that the influence of various compatibilizers was appeared on all the properties studied. The properties of the blends compatibilized with SEBS, EVA, and SBR are very distinct from those of blends compatibilized with blend of compatibilizers. Results show that compatibilized blends with the blend of compatibilizers EVA/PP-g-MAH, SBR/PP-g-MAH, and SEBS/PP-g-MAH or SBR were relatively more stable than the uncompatibilized blend and blend compatibilized with SEBS or EVA. The compatibilizer does not only reduce the interfacial tension or increase the phase interfacial adhesion between the immiscible polymers, but greatly affects the degree of crystallinity of blends.

  相似文献   

6.
《先进技术聚合物》2018,29(1):234-243
In this study, sepiolite nanoclay is used as reinforcing agent for poly(lactic acid) (PLA)/(styrene‐ethylene‐butylene‐styrene)‐g‐maleic anhydride copolymer (SEBS‐g‐MA) 90/10 (w/w) blend. Effects of sepiolite on thermal behavior, morphology, and thermomechanical properties of PLA/SEBS‐g‐MA blend were investigated. Differential scanning calorimetry results showed 7% improvement in crystallinity at 0.5 wt% of sepiolite. The nanocomposite exhibited approximately 36% increase in the tensile modulus and 17% increase in toughness as compared with the blend matrix at 0.5 and 2.5 wt% of sepiolite respectively. Field emission scanning electron microscopy and transmission electron microscopy images exhibited sepiolite‐induced morphological changes and dispersion of sepiolite in both PLA and SEBS‐g‐MA phases. Dynamic mechanical analysis and wide angle X‐ray diffraction present evidences in support of the reinforcing nature of sepiolite and phase interaction between the filler and the matrix. This study confirms that sepiolite can improve tensile modulus and toughness of PLA/SEBS‐g‐MA blend.  相似文献   

7.
Surface morphologies formed by the phase segregation of poly(styrene‐b‐ethylene/butylene‐b‐styrene) (SEBS)/poly(methyl methacrylate) (PMMA) blend films prepared via spin coating on mica substrates were studied with atomic force microscopy accompanied by a solvent extraction treatment, X‐ray photoelectron spectroscopy, and contact‐angle measurements. Three kinds of surface structures of films were observed. Besides the ribbonlike morphology and the dispersed domains in a continuous matrix that are common in this field, we found a special interlocking layer structure characterized by a smooth SEBS layer as the cover on the top and a layer composed of hill‐like PMMA dispersed in the SEBS matrix at the bottom when the composition of the film was around 50:50 SEBS and PMMA. A series of blend films with different thicknesses were then prepared to investigate the interfacial structure, and the formation process of the interlocking layer, which could be elucidated by a schematic diagram, was discussed. The interlocking bilayer film with SEBS on the top possessed high thermal stability and the best surface roughness in comparison with other structures. It might find important technical applications in fields such as adhesion, lubrication, and protective coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 532–543, 2007.  相似文献   

8.
In order to develop PP (polypropylene)‐based blends with balanced toughness and rigidity, the poly‐blends of PP/PC (polycarbonate)/POE (ethylene–octene copolymer) were prepared by applying styrene–ethylene–propylene–styrene (SEPS) as the macromolecular compatibilizer. The compatibilizing effect was studied in terms of the mechanical, morphologies and thermal properties, and the compatibilized PP‐based blends presented remarkable improvement in impact toughness and balanced tensile strength due to the formed special morphology structure. Additionally, by preparing the pre‐blend of PC/SEPS, the melt viscosity of the PP matrix can match that of the dispersed phase PC and POE, which led to a further improvement in the mechanical property of the blends. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Summary: Processing and compatibilization effects of a commercially available styrene/ ethylene-butylene/ styrene (SEBS) compatibilizer on the morphological structure, rheological and mechanical properties of blends of polystyrene (PS) and high density polyethylene (HDPE) were investigated. The rheological behaviour of the blends melt during processing was followed by measuring torque; extrusion capacity output and melts back-pressure in a twin screw extruder. The processing parameters were decreased with the HDPE content. The results show that SEBS compatibilizer can yield compatibilization by substantially reducing torque and increasing the back-pressure. However, the Hurst indices of melt processing parameters are increased with compatibilization. Near-infrared spectra had been described by the Hurst index HNIR which is then related to HDPE content in the blends. The correlation between the blend compositions, morphological structure, mechanical and rheological properties and processing parameters was established and discussed on base of correlation with the fractal indices obtained from the SEM microphotographs of PS/HDPE/SEBS blends.  相似文献   

10.
In this work, maleic anhydride grafted styrene–ethylene–butadiene–styrene copolymer (SEBS‐g‐MA) and carbon nanotubes (CNTs) were introduced into the immiscible polypropylene/polystyrene (PP/PS) blend. Among the three polymer components, SEBS‐g‐MA has the strongest affinity to CNTs; thus, it exhibits dual effects to adjust the phase morphology of the blends and the dispersion state of CNTs in the blends. The experimental observations obtained from morphology characterizations using scanning electron microscope and transmission electron microscope confirm the selective localization of CNTs at the interface of the immiscible PP/PS blend. As a consequence, largely decreased percolation threshold is achieved when most of CNTs are selectively localized at the interface region between PP and PS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A series of compatibilizers, including polypropylene (PP) grafted with 2‐tertbutyl‐6‐(3‐tertbutyl‐ 2‐hydroxy‐5‐methylbenzyl)‐4‐methylphenyl acrylic ester (BPA), glycidyl methacrylate (GMA), GMA/styrene (GMA‐st), and 2‐allyl bisphenol A (2A) were investigated for the purpose of improving the compatibility of PP/polycarbonate (PC) blends. PP‐g‐BPA shows a remarkable compatibilizing effect on PP/PC blends since it has similar group‐benzene ring with PC, and it is a sort of heat‐resistant antioxidant in the meantime, which can reduce the molecular degradation of PP during grafting and blending under high temperatures. Its compatibilizing effect was examined in terms of the mechanical, thermal properties, and morphologies. PP/PC blends show a decreasing and much more homogeneous size of dispersed PC particles through addition of a small amount of PP‐g‐BPA, and dynamic mechanical analysis (DMA) reveals a noticeable approach of Tg between PP and PC, indicating the improvement of the compatibility of PP/PC blends. Furthermore, styrene‐ethylene‐butylene‐styrene (SEBS) as a toughening rubber and a compatibilizer was applied to PP/PC blends. Around 25 wt% SEBS and 20 wt% PC lead to high toughness and strength of PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

13.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

14.
Among the various methods available for recycling plastics waste, blending technology is a straightforward and relatively simple method for recycling. In this paper, a new blending technology, low‐temperature solid‐state extrusion, was discussed. Several recycled poly(terephthalate ethylene)/bisphenol a polycarbonate/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) blends (R‐PET/PC/SEBS blends) have been prepared by this technology. The results show that thermal and hydrolytic degradation of R‐PET is improved when extruding temperature was between the glass transition temperature (Tg) and cold crystallization temperature (Tcc). Elongation at break and notched impact strength were increased evidently, from 15.9% to 103.6, and from 8.6 kJ/m2 to 20.4 kJ/m2, respectively. The appropriate rotating speed of screws was between 100 and 150 rpm. At the same time, the appropriate rotating speed of the screws brings a suitable shear viscosity ratio of R‐PET and PC, which is of advantage to blending of R‐PET and PC together with SEBS. Dispersion of minor phase, PC and SEBS, became finer and smaller, to about 1 µm. Chain extender, Methylenediphenyl diisocyanate (MDI) can react with the end‐carboxyl group and end‐hydroxyl group of R‐PET. FT‐IR spectra testified that the reactions have been happened in the extruding process. A chain extending reaction not only increased the molecular weight of PET and PC, but also can synthesize PET‐g‐PC copolymer to act as a reactive compatilizer. An SEM micrograph shows that a micro‐fiber structure of PET was formed in the blend sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene-ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indicate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with MLO leads to an increase in impact strength up to 6.1 kJ/m2, thus giving evidence of the potential of MLO to compete with other petroleum-derived compatibilizers to obtain tough PLA formulations. MLO also provides increased ductile properties, since neat PLA is a brittle polymer with an elongation at break of 7.4%, while its blend with 20 wt.% SEBS and MLO as compatibilizer offers an elongation at break of 50.2%, much higher than that provided by typical SEBS-g-MA compatibilizer (10.1%). MLO provides a slight decrease (about 3 °C lower) in the glass transition temperature (Tg) of the PLA-rich phase, thus showing some plasticization effects. Although MLO addition leads to some yellowing due to its intrinsic yellow colour, this can contribute to serving as a UV light barrier with interesting applications in the packaging industry. Therefore, MLO represents a cost-effective and sustainable solution to the use of conventional petroleum-derived compatibilizers.  相似文献   

16.
Charpy drop‐weight‐impact and essential work of fracture (EWF) characteristics of maleic anhydride (MA)‐compatibilized styrene–ethylene butylene–styrene (SEBS)/polypropylene (PP) blends and their composites reinforced with short glass fibers (SGFs) were investigated. MA was grafted to either SEBS copolymer (SEBS‐g‐MA) or PP (PP‐g‐MA). The mPP blend was prepared by the compounding of 95% PP and 5% PP‐g‐MA. Drop‐weight‐impact results revealed that the mPP specimen had an extremely low impact strength. The incorporation of SEBS or SEBS‐g‐MA elastomers into mPP improved its impact strength dramatically. Similarly, the addition of SEBS was beneficial for enhancing the impact strength of the SGF/SEBS/mPP and SGF/SEBS‐g‐MA/mPP hybrids. A scanning electron microscopy examination of the fractured surfaces of impact specimens revealed that the glass‐fiber surfaces of the SGF/SEBS/mPP and SGF/SEBS‐g‐MA/mPP hybrids were sheathed completely with deformed matrix material. This was due to strong interfacial bonding between the phase components of the hybrids associated with the MA addition. Impact EWF tests were carried out on single‐edge‐notched‐bending specimens at 3 m s?1. The results showed that pure PP, mPP, and the composites only exhibited specific essential work. The nonessential work was absent in these specimens under a high‐impact‐rate loading condition. The addition of SEBS or SEBS‐g‐MA elastomer to mPP increased both the specific essential and nonessential work of fracture. This implied that elastomer particles contributed to the dissipation of energy at the fracture surface and in the outer plastic zone at a high impact speed of 3 m s?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1881–1892, 2002  相似文献   

17.
We fabricated bilayered nanocomposite coatings composed of a hard polymer layer placed on top of an elastomeric layer. The primary layer of poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) was attached to the surface by grafting to a chemically reactive silicon surface functionalized with epoxy‐terminated SAM. The SEBS layer served as the compliant interlayer in the bilayered polymer coating. The topmost hard layer was a high performance polymer made of epoxy resin (EP) and an amino functionalized poly(paraphenylene) (PPP). We built the bilayered structure by spincoating the EP/PPP mixture on top of the grafted SEBS layer. The solidification of the topmost layer was initiated at low temperatures (40‐50°C) to avoid dewetting. The curing of the film was finished at 110°C (15 hours) and the EP/PPP layer was strongly attached to the SEBS layer. It was found that the EP/PPP layer did not penetrate inside the elastic primary layer during the solidification. The elastic response of the hard polymer layer was affected significantly by the underlying elastomeric layer. The SEBS layer served as a compliant interlayer capable of dissipating the interfacial stresses originating from dissimilarities in the physical properties between the polymer coating and the inorganic substrate.  相似文献   

18.
In this study, a series of styrene‐b‐ethylene‐co‐butylene‐b‐styrene copolymer (SEBS)/polypropylene (PP)/oil blends with different kinds of oil composition was developed through melt blending. The effect of oil with different composition and properties on its phase equilibrium and “redistribution” in multiphasic SEBS elastomer was systematically studied for the first time. Moreover, an integral influencing mechanism of oil composition on the structure and properties of SEBS/PP/oil blends was also put forward. The mineral oil was mainly distributed in ethylene/butylene (EB)/PP phase, which greatly enhanced the processing flowability of SEBS/PP/oil blends. With increasing oil CN content, a redistribution of oil appeared and excess naphthenic oil (NO) entered the interphase of soft and hard phases. The dynamic mechanical thermal analysis (DMTA) analysis indicated that the polystyrene (PS) phase was plasticized, which also helped to improve the processing fluidity of blends. However, the plasticizing of physical cross‐linking point PS resulted in a decrease in mechanical strength and thermal stability. Small‐angle X‐ray scattering (SAXS) and transmission electron microscope (TEM) results showed that PS phase (45 nm to 55 nm) cylindrically distributed in EB/PP/oil matrix, the excess NO in the interphase enlarged the distance between PS phase and widen the escape channel for oil migration. At over 45% oil CN content, the electron density difference between soft and hard phases reduced to the minimum, same as TgPS, indicating a deeper plasticizing effect. The PS phase swelled and exhibited elastic behavior; thus, the force could be uniformly transferred between two phases. Importantly, a recover in strength and thermal stability was observed in O‐5 blend. This work significantly filled the gap of studies in oil‐extended thermoplastic elastomers (TPEs), exhibiting great theoretical guiding significance and application value.  相似文献   

19.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

20.
Novel block–graft copolymers [poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene)‐g‐poly(tert‐butyl acrylate)] were synthesized by the atom transfer radical polymerization (ATRP) of tert‐butyl acrylate (tBA) with chloromethylated poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) as a macromolecular initiator. The copolymers were composed of triblock SEBS as the backbone and tBA as grafts attached to the polystyrene end blocks. The macromolecular initiator (chloromethylated SEBS) was prepared by successive hydrogenation and chloromethylation of SEBS. The degree of chloromethylation, ranging from 1.6 to 36.5 mol % according to the styrene units in SEBS, was attained with adjustments in the amount of SnCl4 and the reaction time with a slight effect on the monodispersity of the starting material (SEBS). The ATRP mechanism of the copolymerization was supported by the kinetic data and the linear increase in the molecular weights of the products with conversion. The graft density was controlled with changes in the functionality of the chloromethylated SEBS. The average length of the graft chain, ranging from a few repeat units to about two hundred, was adjusted with changes in the reaction time and alterations in the initiator/catalyst/ligand molar ratio. Incomplete initiation was detected at a low conversion; moreover, for initiators with low functionality, sluggish initiation was overcome with suitable reaction conditions. The block–graft copolymers were hydrolyzed into amphiphilic ones containing poly(acrylic acid) grafts. The aggregation behavior of the amphiphilic copolymers was studied with dynamic light scattering and transmission electron microscopy, and the aggregates showed a variety of morphologies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1253–1266, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号