首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Quasi‐elastic light scattering spectroscopy intensity–intensity autocorrelation functions [S(k,t)] and static light scattering intensities of 1 MDa hydroxypropylcellulose in aqueous solutions were measured. With increasing polymer concentration, over a narrow concentration range, S(k,t) gained a slow relaxation. The transition concentration for the appearance of the slow mode (ct) was also the transition concentration for the solution‐like/melt‐like rheological transition (c+) at which the solution shear viscosity [ηp(c)] passed over from a stretched exponential to a power‐law concentration dependence. To a good approximation, we found ct[η] ≈ c+[η] ≈ 4, [η] being the intrinsic viscosity. The appearance of the slow mode did not change the light scattering intensity (I): from a concentration lower than ct to a concentration greater than ct, I/c fell uniformly with increasing concentration. The slow mode thus did not arise from the formation of compact aggregates of polymer chains. If the polymer slow mode arose from long‐lived structures that were not concentration fluctuations, the structures involved much of the dissolved polymer. At 25 °C, the mean relaxation rate of the slow mode approximately matched the relaxation rate for the diffusion of 0.2‐μm‐diameter optical probes observed with the same scattering vector. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 323–333, 2005  相似文献   

2.
The oxidation of the 28 VE cyclo‐E6 triple‐decker complexes [(CpRMo)2(μ,η66‐E6)] (E=P, CpR=Cp( 2 a ), Cp*( 2 b ), CpBn( 2 c )=C5(CH2Ph)5; E=As, CpR=Cp*( 3 )) by Cu+ or Ag+ leads to cationic 27 VE complexes that retain their general triple‐decker geometry in the solid state. The obtained products have been characterized by cyclic voltammetry (CV), EPR, Evans NMR, multinuclear NMR spectroscopy, MS, and structural analysis by single‐crystal X‐ray diffraction. The cyclo‐E6 middle decks of the oxidized complexes are distorted to a quinoid ( 2 a ) or bisallylic ( 2 b , 2 c , 3 ) geometry. DFT calculations of 2 a , 2 b , and 3 persistently result in the bisallylic distortion as the minimum geometry and show that the oxidation leads to a depopulation of the σ‐system of the cyclo‐E6 ligands in 2 a – 3 . Among the starting complexes, 2 c is reported for the first time including its preparation and full characterization.  相似文献   

3.
A dinuclear tantalum complex, [Ta2Cl6(μ‐C4Et4)] ( 2 ), bearing a tantallacyclopentadiene moiety, was synthesized by treating [(η2‐EtC?CEt)TaCl3(DME)] ( 1 ) with AlCl3. Complex 2 and its Lewis base adducts, [Ta2Cl6(μ‐C4Et4)L] (L=THF ( 3 a ), pyridine ( 3 b ), THT ( 3 c )), served as more active catalysts for cyclotrimerization of internal alkynes than 1 . During the reaction of 3 a with 3‐hexyne, we isolated [Ta2Cl4(μ‐η44‐C6Et6)(μ‐η22‐EtC?CEt)] ( 4 ), sandwiched by a two‐electron reduced μ‐η44‐hexaethylbenzene and a μ‐η22‐3‐hexyne ligand, as a product of an intermolecular cyclization between the metallacyclopentadiene moiety and 3‐hexyne. The formation of arene complexes [Ta2Cl4(μ‐η44‐C6Et4Me2)(μ‐η22‐Me3SiC?CSiMe3)] ( 7 b ) and [Ta2Cl4(μ‐η44‐C6Et4RH)(μ‐η22‐Me3SiC?CSiMe3)] (R=nBu ( 8 a ), p‐tolyl ( 8 b )) by treating [Ta2Cl4(μ‐C4Et4)(μ‐η22‐Me3SiC?CSiMe3)] ( 6 ) with 2‐butyne, 1‐hexyne, and p‐tolylacetylene without any isomers, at room temperature or low temperature were key for clarifying the [4+2] cycloaddition mechanism because of the restricted rotation behavior of the two‐electron reduced arene ligands without dissociation from the dinuclear tantalum center.  相似文献   

4.
The analytic equations for viscosity coefficients and the corresponding elastic moduli obtained in [3] were used to calculate these values over a wide range of reduced frequency values (ω* ≈ 10?7?10). The volume η v (ω) and shear η s (ω) viscosity coefficients decreased as the frequency increased. The dispersions η v (ω) and K r (ω) were only caused by the contribution of structural relaxation, and the dispersions η s (ω) and μ(ω), by translational and structural relaxation. The shear elastic modulus μ(ω) and relaxation volume elastic modulus K r (ω) increased as the frequency grew. The results obtained were in satisfactory agreement with the conclusions from general relaxation theory.  相似文献   

5.
Theoretical studies of the influence of modified terminal segments (TSs) on the relaxation spectrum of a dendrimer and dendrimer mechanical properties such as dynamic viscosity, η(ω), the elastic, G′(ω), and loss, G″(ω), moduli have been carried out by the Rouse model. Two major types of modified TS have been studied: (i) TS with an attached rigid massive group (i.e., TSs with additional friction) and (ii) TSs with a length different from the length of an inner segment. In the low‐frequency region, G′(ω), G″(ω), and η(ω) increase with the rise of friction of TS. In the high‐frequency region, dynamic moduli and viscosity depend on the length of TS. In the intermediate region, the moduli and viscosity are determined by a combined parameter: the characteristic time of TS, τend, which depends on the friction and length of TS. For both types of TSs, the position of the G″(ω) maximum, ωmax, depends on τend. In most of the considered cases, the linear dependence of ωmax on τend has been found. The method, which takes into account a deceleration of TS mobility with the rise in the number of generations, n, has been proposed. It was supposed that the effect of the deceleration corresponds to the forming of a dense surface shell with the rise of n, but similar behavior can also be caused by other reasons. In this case, ωmax shifts to the low‐frequency region with an increase in the number of generations. The conclusions of the theory developed in this paper are in agreement with results of the experiment, in which G′(ω) and G″(ω) were obtained for polyamidoamine dendrimers.

  相似文献   


6.
Treatment of the pentaphosphaferrocene [Cp*Fe(η5‐P5)] with CuI halides in the presence of different templates leads to novel fullerene‐like spherical molecules that serve as hosts for the templates. If ferrocene is used as the template the 80‐vertex ball [Cp2Fe]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 4 ), with an overall icosahedral C80 topological symmetry, is obtained. This result shows the ability of ferrocene to compete successfully with the internal template of the reaction system [Cp*Fe(η5‐P5)], although the 90‐vertex ball [{Cp*Fe(η511111‐P5)}12(CuCl)10(Cu2Cl3)5{Cu(CH3CN)2}5] ( 2 a ) containing pentaphosphaferrocene as a guest is also formed as a byproduct. With use of the triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] as a template the reaction between [Cp*Fe(η5‐P5)] and CuBr leads to the 90‐vertex ball [(CpCr)2(μ,η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuBr}10{Cu2Br3}5{Cu(CH3CN)2}5] ( 6 ), in which the complete molecule acts as a template. However, if the corresponding reaction is instead carried out with CuCl, cleavage of the triple‐decker complex is found and the 80‐vertex ball [CpCr(η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 5 ) is obtained. This accommodates as its guest [CpCr(η5‐As5)], which has only 16 valence electrons in a triplet ground state and is not known as a free molecule. The triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] requires 53.1 kcal mol?1 to undergo cleavage (as calculated by DFT methods) and therefore this reaction is clearly endothermic. All new products have been characterized by single‐crystal X‐ray crystallography. A favoured orientation of the guest molecules inside the host cages has been identified, which shows π???π stacking of the five‐membered rings (Cp and cyclo‐As5) of the guests and the cyclo‐P5 rings of the nanoballs of the hosts.  相似文献   

7.
A structurally diverse range of lipophilic, cationic η6‐arene η5‐cyclopentadienyl (η5‐Cp*) full‐sandwich complexes of ruthenium(II) have been prepared and structurally characterized by Fourier‐transform IR and NMR spectroscopy, electrospray mass spectrometry, and elemental microanalyses. Computational experiments incorporating the Hartree–Fock theory and the second‐order Møller–Plesset perturbation theory predict each complex to possess a uniform δ+ electrostatic potential, with the cationic charge of the [RuCp*]+ moiety completely delocalizing throughout the molecular structure of each metallocene. In vitro cytotoxicity studies demonstrate these delocalized lipophilic cations to be potent growth inhibitors of eleven unique tumorigenic cell lines, while exhibiting significantly lower levels of toxicity towards both a normal human fibroblast and a mouse macrophage cell line. Single‐crystal X‐ray structural determinations are additionally reported for five complexes, [Ru(η6‐C6H5(CH2)2CH3)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C6H5CO2CH2CH3)(η5‐C5(CH3)5)]BF4, [Ru(η6‐C10H8)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C14H10)(η5‐C5(CH3)5)]BPh4, and [Ru(η6‐C16H10)(η5‐C5(CH3)5)]BPh4.  相似文献   

8.
Halfsandwich‐Type Complexes of Iridium with Tetramethylcyclopentadienyl as Ligand The iridium(I) complexes [(η5‐C5HMe4)Ir(C2H4)2] ( 2 ) and [(η5‐C5HMe4)Ir(CO)2] ( 4 ), which have been prepared from [IrCl(C2H4)2]2 or [IrCl(CO)3]n and LiC5HMe4, react with tosylchloride as well as with X2 (X = Cl, Br, I) by oxidative addition to yield the corresponding iridium(III) compounds. Treating the complexes [(η5‐C5HMe4)IrX2]n ( 7 — 9 ) with CO or PR3 leads to a cleavage of the halide bridges and to the formation of the mononuclear products [(η5‐C5HMe4)IrX2(CO)] ( 10 , 11 ) and [(η5‐C5HMe4)IrX2(PR3)] ( 12 — 20 ), respectively. The molecular structure of [(η5‐C5HMe4)IrBr2(PiPr3)] ( 18 ) was determined crystallographically. The reactions of 8 (X = Br) and 9 (X = I) with Ph2P(CH2)nPPh2 (n = 1 or 2) afford the bridged compounds [{(η5‐C5HMe4)IrX2}2{μ‐Ph2P(CH2)nPPh2}] ( 21—23 ). The dihalide complexes [(η5‐C5HMe4)IrI2(PPh3)] ( 16 ) and [(η5‐C5HMe4)IrX2(PiPr3)] ( 17—19 ) react with hydride sources to give the dihydrido‐ and monohydrido derivatives [(η5‐C5HMe4)IrH2(PPh3)] ( 24 ) and [(η5‐C5HMe4)IrH(X)(PiPr3)] ( 25—27 ). The related dimethyl and monomethyl compounds [(η5‐C5HMe4)Ir(CH3)2(PiPr3)] ( 28 ) and [(η5‐C5HMe4)IrCH3(I)(PiPr3)] ( 29 ) have been obtained from the dihalide precursors 18 or 19 and CH3MgI in the molar ratio of 1:2 or 1:1, respectively.  相似文献   

9.
Reactions of Cu+ containing the weakly coordinating anion [Al{OC(CF3)3}4]? with the polyphosphorus complexes [{CpMo(CO)2}2(μ,η22‐P2)] ( A ), [CpM(CO)23‐P3)] (M=Cr( B1 ), Mo ( B2 )), and [Cp*Fe(η5‐P5)] ( C ) are presented. The X‐ray structures of the products revealed mononuclear ( 4 ) and dinuclear ( 1 , 2 , 3 ) CuI complexes, as well as the one‐dimensional coordination polymer ( 5 a ) containing an unprecedented [Cu2( C )3]2+ paddle‐wheel building block. All products are readily soluble in CH2Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature 31P{1H} NMR spectroscopy.  相似文献   

10.
Valence‐to‐Core (VtC) X‐ray emission spectroscopy (XES) was used to directly detect the presence of an O?O bond in a complex comprising the [CuII2(μ‐η22‐O2)]2+ core relative to its isomer with a cleaved O?O bond having a [CuIII2(μ‐O)2]2+ unit. The experimental studies are complemented by DFT calculations, which show that the unique VtC XES feature of the [CuII2(μ‐η22‐O2)]2+ core corresponds to the copper stabilized in‐plane 2p π peroxo molecular orbital. These calculations illustrate the sensitivity of VtC XES for probing the extent of O?O bond activation in μ‐η22‐O2 species and highlight the potential of this method for time‐resolved studies of reaction mechanisms.  相似文献   

11.
The redox chemistry of [(Cp′′′Co)2(μ,η22‐E2)2] (E=P ( 1 ), As ( 2 ); Cp′′′=1,2,4‐tri(tert‐butyl)cyclopentadienyl) was investigated. Both compounds can be oxidized and reduced twice. That way, the monocations [(Cp′′′Co)2(μ,η44‐E4)][X] (E=P, X=BF4 ( 3 a ), [FAl] ( 3 b ); E=As, X=BF4 ( 4 a ), [FAl] ( 4 b )), the dications [(Cp′′′Co)2(μ,η44‐E4)][TEF]2 (E=P ( 5 ), As ( 6 )), and the monoanions [K(18‐c‐6)(dme)2][(Cp′′′Co)2(μ,η44‐E4)] (E=P ( 7 ), As ( 8 )) were isolated. Further reduction of 7 leads to the dianionic complex [K(18‐c‐6)(dme)2][K(18‐c‐6)][(Cp′′′Co)2(μ,η33‐P4)] ( 9 ), in which the cyclo‐P4 ligand has rearranged to a chain‐like P4 ligand. Further reduction of 8 can be achieved with an excess of potassium under the formation of [K(dme)4][(Cp′′′Co)2(μ,η33‐As3)] ( 10 ) and the elimination of an As1 unit. Compound 10 represents the first example of an allylic As3 ligand incorporated into a triple‐decker complex.  相似文献   

12.
Neutral and cationic cyclopentadienone (CpO) N‐heterocyclic carbene (NHC) bis‐carbonyl iron(0) complexes bearing, appended to the NHC ligand, either a terminal amino group on the lateral chain, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)nNH2)] with n = 2 ( 2a ) and 3 ( 2b ), or a cationic NMe3+ fragment, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)2NMe3)](I) ( 3 ), were prepared and characterized in terms of their structure, stability and reactivity. The photochemical properties of 2a and 2b were examined both in organic solvents and in water, revealing the photoactivated release of one CO ligand followed by the formation of the chelated complex [Fe(η4‐CpO)(CO)(κ2C,N‐NHC(CH2)2NH2)] ( 4 ), whose molecular structure was confirmed by single crystal X‐ray diffraction studies. This metallacyclization occurs only in the case of 2a , with the ethylene spacer between NHC ring and NH2 group in the lateral chain, allowing the formation of a stable 6‐membered ring. On the other hand, 2b undergoes decomposition upon irradiation. The reactivity in aqueous solutions revealed the chemical speciation of the complexes at different pH and especially under physiological conditions (phosphate buffer solution at pH 7.4 and 37 °C). The lack of data on the biological properties of iron(0) complexes prompted us to preliminarily investigate their cytotoxicity against model cancer cells (AsPC‐1 and HPAF‐II), along with a determination of their lipophilicity.  相似文献   

13.
The reaction of p‐(N,N‐dimethylaminophenyl)diphenylphosphine [PPh2(p‐C6H4NMe2)] with [Fe3(CO)12], [Rh(CO)2Cl]2 and PdCl2 resulted in three new mononuclear complexes, {Fe(CO)41‐(P)‐PPh2(p‐C6H4NMe2)]} ( 1a ), trans‐{Rh(CO)Cl[η1‐(P)‐PPh2(p‐C6H4NMe2)]2} ( 2 ) and trans‐{PdCl21‐(P)‐PPh2(p‐C6H4NMe2)]2} ( 3 ), respectively. A small amount of dinuclear nonmetal‐metal bonded complex, {Fe2(CO)8[µ‐(P,N)‐PPh2(p‐C6H4NMe2)]} ( 1b ), was also isolated as a side product in the reaction of [Fe3(CO)12]. The complexes were characterized by elemental analyses, mass, IR, UV–vis, 1H, 13C (except 1b) and 31P{1H} NMR spectroscopy. The Pd complex 3 effectively catalyzes the Suzuki–Miyaura cross‐coupling reactions of aryl halides with arylboronic acids in water–isopropanol (1:1) at room temperature. Excellent yields (up to 99% isolated yield) were achieved. The effects of different solvents, bases, catalyst quantities were also evaluated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
[MoCl(CO)35-C5H5)] on photolysis with allyl or crotyl halides C5H4RX gives MoIV complexes [MoX2(CO)(η3-C3H4R)(η5-C5H5)] (R = H, X = Cl, Br, I; R = Me, X = Cl, Br). [WCl(CO)35-C5H5)] under similar conditions gives trihalides [WX3(CO)25-C5H5)] (X = Cl, Br) on reaction with C3H5Cl and C3H5Br while [WCl(CO)35-C5H4SiMe3)] and [CrI(CO)35-C5H5)] react with allyl chloride to give [WCl3(CO)25-C5H4SiMe3)] and [CrCl25-C5H5)] respectively.  相似文献   

15.
Two p‐phenylenevinylene (PV) trimers, containing 3′‐methylbutyloxyl (in MBOPV3) and 2′‐ethylhexyloxyl (in EHOPV3) side chains, are used as model compounds of PV‐based conjugated polymers (PPV) with the purpose of clarifying the origin of fast (picosecond time) components observed in the fluorescence decays of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV). The fluorescence decays of MBOPV3 and EHOPV3 reveal the presence of similar fast components, which are assigned to excited‐state conformational relaxation of the initial population of non‐planar trimer conformers to lower‐energy, more planar conformers. The rate constant of conformational relaxation kCR is dependent on solvent viscosity and temperature, according to the empirical relationship kCR=o?exp(?αEη/RT), where o is the frequency factor, ηo is the pre‐exponential coefficient of viscosity, Eη is the activation energy of viscous flow. The empirical parameter α, relating the solvent microscopic friction involved in the conformational change to the macroscopic solvent friction (α=1), depends on the side chain. The fast component in the fluorescence decays of MEH‐PPV polymers (PPVs), is assigned to resonance energy transfer from short to longer polymer segments. The present results call for revising this assignment/interpretation to account for the occurrence of conformational relaxation, concurrently with energy transfer, in PPVs.  相似文献   

16.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

17.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

18.
Herein, we report on the first synthesis and structural characterization of the iron based aminoborane complexes [Fe(PNP)(H)(η22‐H2B=NR2)]+ (R=H, Me). These species are formed upon protonation of the borohydride complex [Fe(PNP)(H)(η2‐BH4)] by ammonium salts [NH2R2]+ (R=H, Me). For R=Me, the reaction proceeds via the cationic dinuclear intermediate [{Fe(PNP)(H)}2222‐BH4)]+. A mechanism for the reaction is proposed based on DFT calculations that also indicate the final aminoborane complex as the thermodynamic product. All complexes were characterized by NMR spectroscopy, HRMS, and X‐ray crystallography.  相似文献   

19.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

20.
The coordination chemistry of platinum(II) with a series of thiosemicarbazones {R(H)C2=N3‐N2(H)‐C1(=S)‐N1H2, R = 2‐hydroxyphenyl, H2stsc; pyrrole, H2ptsc; phenyl, Hbtsc} is described. Reactions of trans‐PtCl2(PPh3)2 precursor with H2stsc (or H2ptsc) in 1 : 1 molar ratio in the presence of Et3N base yielded complexes, [Pt(η3‐ O, N3, S‐stsc)(PPh3)] ( 1 ) and [Pt(η3‐ N4, N3, S‐ptsc)(PPh3)] ( 2 ), respectively. Further, trans‐PtCl2(PPh3)2 and Hbtsc in 1 : 2 (M : L) molar ratio yielded a different compound, [Pt(η2‐ N3, S‐btsc)(η1‐S‐btsc)(PPh3)] ( 3 ). Complex 1 involved deprotonation of hydrazinic (‐N2H‐) and hydroxyl (‐OH) groups, and stsc2? is coordinating via O, N3, S donor atoms, while complex 2 involved deprotonation of hydrazinic (‐N2H‐) and ‐N4H groups and ptsc2? is probably coordinating via N4, N3, S donor atoms. Reaction of PdCl2(PPh3)2 with Hbtsc‐Me {C6H5(CH3)C2=N3‐N2(H)‐C1(=S)‐N1H2} yielded a cyclometallated complex [Pd(η3‐C, N3, S‐btsc‐Me)(PPh3)] ( 4 ). These complexes have been characterized with the help of analytical data, spectroscopic techniques {IR, NMR (1H, 31P), U.V} and single crystal X‐ray crystallography ( 1 , 3 and 4 ). The effects of substituents at C2 carbon of thiosemicarbazones on their dentacy and cyclometallation are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号