首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This article reports a new method to quantify the water absorption kinetics and the mass transfer in a polymer solution by using near‐infrared (NIR) spectroscopy and partial least‐squares (PLS) models, while it is exposed to a humid atmosphere. Polymer solutions used in this study were made with highly polar solvents exhibiting both a high affinity for water and a low volatility such as dimethylformamide, dimethylacetamide, and N‐methylpyrrolidone. Poly(ethersulfone) and poly(etherimide) were chosen as polymer models as the method could provide useful information for coating process and membrane fabrication monitoring. Whereas gravimetric kinetics yield data on the overall mass transfer, including both water absorption and solvent evaporation, in situ analyses using NIR can quantify separately the solvent and nonsolvent concentration change in the polymer solution. Quantitative models were developed using PLS regression to predict the local water, polymer, and solvent weight fractions in the polymer solution. The method was proved to be suitable for the different studied systems and allowed to infer mass transfers until the onset of the phase separation process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1960–1969, 2010  相似文献   

2.
Diffusion in a boundary between a polymer+solvent solution and non-solvent was treated by accounting for the presence of the four diffusion coefficients that describe the isothermal transport process in a three component system. Diffusion equations were integrated assuming a concentration dependence of diffusion coefficients that account for the thermodynamic conditions on the cross diffusion terms of Eq. (1). The presence of non-zero cross terms promotes an incongruent diffusion of polymer whose concentration increases at the boundary between the polymer+solvent solution and the non-solvent. Although our model describes diffusion in the range of homogeneous solution, this incongruent polymer diffusion is a process similar to that promoted by the solvent evaporation from the polymer+solvent film that some authors suggested as an intermediate step before the film immersion into the coagulation bath to obtain good asymmetric membranes.  相似文献   

3.
Sorption and diffusion properties of poly(vinylidene fluoride)‐graft‐poly(styrene sulfonic acid) (PVDF‐g‐PSSA) and Nafion® 117 polymer electrolyte membranes were studied in water/methanol mixtures. The two types of membranes were found to have different sorption properties. The Nafion 117 membrane was found to have a maximum in‐solvent uptake around 0.4 to 0.6 mole fraction of methanol, while the PVDF‐g‐PSSA membranes took up less solvent with increasing methanol concentration. The proton NMR spectra were recorded for membranes immersed in deuterated water/methanol mixtures. The spectra showed that the hydroxyl protons inside the membrane exhibit resonance lines different from the resonance lines of hydroxyl protons in the external solvent. The spectral features of the lines of these internal hydroxyl groups in the membranes were different in the Nafion membrane compared with the PVDF‐g‐PSSA membranes. Diffusion measurements with the pulsed field gradient NMR (PFG‐NMR) method showed that the diffusion coefficient of the internal hydroxyl groups in the solvent immersed Nafion membrane mirrors the changes in the diffusion coefficients of hydroxyl and methyl protons in the external solvent. For the PVDF‐g‐PSSA membranes, a decrease in the diffusion coefficient of the internal hydroxyl protons was seen with increasing methanol concentration. These results indicate that the morphology and chemical structure of the membranes have an effect on their solvent sorption and diffusion characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3277–3284, 2000  相似文献   

4.
Summary: The specificity of interactions between pairs of molecules cannot be explicitly given by experimental transport coefficients such as intra‐ or mutual diffusion coefficients. But a microscopic interpretation of the transport properties exists, where distinct diffusion coefficients (DDCs) are related to preferential, correlated motion among distinct molecules. Since in general the DDCs do not play the role of an indicator for molecular self‐association phenomena if not compared with some appropriate standard, here we propose DDCs of hard spheres at the second order of volume fraction as new standard coefficients. The analysis based on these novel DDCs is designed to study intermolecular interaction between macromolecule and solvent. Comparisons of the novel non‐ideal with previous ideal reference states were done, and their combined use is shown to reinforce information conveyed by the usual velocity correlation analysis. The comparison of novel hard sphere standards with real DDCs, corresponding to an homologous chemical series of poly(ethylene glycol)‐water mixtures, provides a look at this polymer‐solvent mixture in a dilute and semi‐dilute regime.

Comparison between real (calculated by using Equation (5)–(7) and experimental data) and hard‐sphere based distinct diffusion coefficients for PEG 200 (1: Dequation/tex2gif-stack-1.gif; 2: Dequation/tex2gif-stack-2.gif and 3: Dequation/tex2gif-stack-3.gif).  相似文献   


5.
The subject of this article is the combined interpretation of intradiffusion and mutual‐diffusion data for polymer–solvent mixtures in terms of integrals over velocity self‐correlation functions and velocity cross‐correlation functions. The combination of mutual‐diffusion, intradiffusion, and activity data allows the evaluation of velocity‐correlation coefficients (VCCs) and distinct‐diffusion coefficients in systems containing one monodisperse solute. This study is the first attempt to extend these approaches to polymers that are polydisperse solutes. Because of the polydispersity, this correlation analysis may become critical for polymers. Its application to polydisperse samples requires the reduction of intradiffusion and mutual‐diffusion coefficients to the same average. After such a reduction, the VCCs and distinct‐diffusion coefficients are evaluated for a homologous series of poly(ethylene glycol)s (PEGs). Attractive PEG–PEG interactions depend on the chain length and concentration of PEG. In this analysis, network formation in PEG–water systems appears to be a smooth process. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 43–51, 2002  相似文献   

6.
Theories based on free‐volume concepts have been developed to characterize the self and mutual‐diffusion coefficients of low molecular weight penetrants in rubbery and glassy polymer‐solvent systems. These theories are applicable over wide ranges of temperature and concentration. The capability of free‐volume theory to describe solvent diffusion in glassy polymers is reviewed in this article. Two alternative free‐volume based approaches used to evaluate solvent self‐diffusion coefficients in glassy polymer‐solvent systems are compared in terms of their differences and applicability. The models can correlate/predict temperature and concentration dependencies of the solvent diffusion coefficient. With the appropriate accompanying thermodynamic factors they can be used to model concentration profiles in mutual diffusion processes that are Fickian such as drying of coatings. The free‐volume methodology has been found to be consistent with molecular dynamics simulations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
8.
The condensation of water vapor on a volatile polymeric solution leads to a porous surface after evaporation of both solvent and water. However, the stabilization of the water microdroplet is of great importance, which can be achieved using specific polymer or adding a third substance to the polymer solution. Short chain alcohols (methanol, ethanol, and n‐propanol) are utilized to fabricate a self‐assembled porous honeycomb film of linear, low molecular weight polystyrene using the breath figure technique. A combination of breath figure processing and the effect of alcohol on a water droplet can stabilize the pattern and make pores on the surface of the polymer film. The quality of the porous honeycomb film is strongly dependent on the type of alcohols and the concentration of polymer. In a specific range of polymer and alcohol concentration, pores cover all the surface of the polymer film. This method offers the possibility of producing a honeycomb structure with no trace of additive residual after the fabrication process and avoiding polymer modification. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 709–718  相似文献   

9.
The kinetic effect of the phase inversion process on the membrane morphology is explored, with emphasis on the diffusion coefficient of the nonsolvent as a measure of the solvent/nonsolvent exchange rate. The diffusion coefficient is closely related to the nonsolvent tolerance of the polymer solution, which was estimated from a pseudo-ternary phase diagram of the following system: polymer: polysulfone; solvent system: a mixture of the solvent 1-methyl-2-pyrrolidinone and a solvent additive (formic acid, water or ethanol); and nonsolvent: ethanol. Regardless of the kind of solvent additive employed, when the diffusion coefficient of the nonsolvent is high for a given gelation medium, then the membrane consists of a smooth, defect-free surface and macrovoid-free cross section, and is highly permeable to oxygen. However, using a polymer solution with a low diffusion coefficient results in a membrane of a rather defective morphology. Therefore, it is concluded that the diffusion coefficient of the nonsolvent is a crucial parameter in controlling membrane morphology.  相似文献   

10.
Porous polylactide (PLA) microspheres were fabricated by an emulsion‐solvent evaporation method based on solution induced phase separation. Scanning electron microscopy (SEM) observations confirmed the porous structure of the microspheres with good connectivity. The pore size was in the range of decade micrometers. Besides large cavities as similarly existed on non‐porous microspheres, small pores were found on surfaces of the porous microspheres. The apparent density of the porous microspheres was much smaller than that of non‐porous microspheres. Fabrication conditions such as stirring rate, good solvent/non‐solvent ratio, PLA concentration and dispersant (polyvinyl alcohol, PVA) concentration had an important influence on both the particle size and size distribution and the pore size within the microspheres. A larger pore size was achieved at a slower stirring rate, lower good solvent/non‐solvent ratio or lower PLA concentration due to longer coalescence time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Porous poly(ε‐caprolactone) structures have been prepared by leaching of compression moulded salt‐containing polymer precipitates. Coagulation takes place when a PCL solution containing dispersed water‐soluble salt particles is precipitated into an excess of non‐solvent. Porous scaffolds are obtained after leaching of the compression moulded polymer‐salt precipitate. This process yields scaffolds with a very homogeneous pore morphology and independent control of pore size and porosity.  相似文献   

12.
Many polymeric membranes are produced by phase inversion technique invented by Loeb and Sourirajan in 1962. The dry-casting method is one of the major phase inversion techniques in which a homogeneous polymer solution consisting of solvent(s) and nonsolvent(s) is cast on a support and then evaporation of the casting solution takes place under convective conditions. In this paper, we model membrane formation by the dry-casting method. The model takes into account film shrinkage, evaporative cooling, coupled heat, and mass transfer and incorporates practical and reliable diffusion theory as well as complex boundary conditions especially at the polymer solution/air interface. The predictions from the model provide composition paths, temperature, and thickness of the solution. By plotting the composition paths on the ternary phase diagram, we ascertain the general structural characteristics of the membranes prepared from particular casting conditions. The predictive ability of the model was evaluated by comparing the results with the experimental data obtained from gravimetric measurements for cellulose acetate (CA)–acetone–water system. In an attempt to illustrate the importance of diffusion formalism on the predictions, recently proposed multicomponent diffusion theory and its simplified forms were utilized in the model. The computational results show that the critical factor for capturing the accurate behavior of membrane formation is the diffusion formalism utilized in the model.  相似文献   

13.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (PVDF‐CTFE) membranes were prepared by solvent casting from dimethylformamide (DMF). The preparation conditions involved a systematic variation of polymer/solvent ratio and solvent evaporation temperature. The microstructural variations of the PVDF‐CTFE membranes depend on the different regions of the PVDF‐CTFE/DMF phase diagram, explained by the Flory‐Huggins theory. The effect of the polymer/solvent ratio and solvent evaporation temperature on the morphology, degree of porosity, β phase content, degree of crystallinity, mechanical, dielectric, and piezoelectric properties of the PVDF‐CTFE polymer were evaluated. In this binary system, the porous microstructure is attributed to a spinodal decomposition of the liquid‐liquid phase separation. For a given polymer/solvent ratio, 20 wt % , and higher evaporation solvent temperature, the β phase content is around 82% and the piezoelectric coefficient, d33, is ? 4 pC/N © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 761–773  相似文献   

14.
A nonequilibrium thermodynamic approach has been developed for describing the emergence of fiber morphologies from a liquid crystalline polymer solution undergoing solvent evaporation, including fibrillar structures, concentric rings, and spiral structures. We utilized Matsuyama–Kato free energy for main‐chain liquid crystalline polymer (MCLCP) solutions, which is an extension of Maier–Saupe theory for nematic ordering and incorporates a chain‐stiffening, combined with Flory‐Huggins free energy of mixing. Temporal evolution of the concentration and nematic order parameters pertaining to the above free energy density of liquid crystalline polymer solution was simulated in the context of time‐dependent Ginzburg–Landau theory coupled with the solvent evaporation rate equation under the quasi‐steady state assumption. The emerged morphological patterns are discussed in relation to the phase diagram of the MCLCP solution and the rate of solvent evaporation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 429–435, 2007  相似文献   

15.
The electrochemical properties of a perfluorosulfonic acid (PFSA) membrane are estimated using a combination of molecular dynamics simulation and statistical thermodynamic model. We obtain all parameters in an ionic conductivity model from an atomistic simulation and remove all adjusted model parameters. From a microscopic point of view, the hydrated PFSA membrane shows micro‐phase segregation which separated into hydrophilic and hydrophobic phases. Our present work originates with this phenomenon and we treat this phase segregation as if it is a continuous phase for each of which the proton (H+) is transported inside the PFSA membrane/solvent (water and alcohols) mixture. The chemical potential for a given system is estimated using a molecular simulation technique to predict the van der Waals interaction energy between the polymer and solvent. In addition, the self diffusion coefficients are calculated from the molecular dynamics simulation. We study various polymer/solvent compositions to understand the concentration dependence of self diffusion coefficient. Our self diffusion coefficients and also the predicted final ionic conductivity agree well with previously reported experimental data. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1455–1463, 2011  相似文献   

16.
The self‐assembly of polycatenar molecules derived from 1,6‐diphenyl‐3,4‐dipropyl‐3‐hexen‐1,5‐diyne has been studied in detail by solution NMR spectroscopy. The analysis of the concentration‐ and temperature‐dependent evolution of the chemical shifts and the diffusion coefficients in [D12]cyclohexane agrees well with an isodesmic model of association in this solvent. The association constants for the stacking and entropy and enthalpy of the process have been obtained. The driving force for the aggregation process is provided by a negative enthalpy (ΔH), which is partially compensated by a negative entropy (ΔS). A structural study of the self‐assembly in solution has been carried out with the help of NOESY NMR spectroscopic experiments.  相似文献   

17.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   

18.
This study develops a modified free‐volume model to predict solvent diffusion coefficients in amorphous polymers by combining the Vrentas–Duda model with the Simha–Somcynsky (S‐S) equation‐of‐state (EOS), and all the original parameters can be used in the modified model. The free volume of the polymer is estimated from the S‐S EOS together with the Williams‐Landel‐Ferry fractional free volume, and the complex process of determining polymer free‐volume parameters in the Vrentas–Duda model and measuring polymer viscoelasticity can be avoided. Moreover, the modified model includes the influence of not only temperature but also pressure on solvent diffusivity. Three common polymers and four solvents are employed to demonstrate the predictions of the modified model. The calculation results are generally consistent with the experimental values. It is reasonable to expect that the modified free‐volume model will become a useful tool in polymer process development. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1000–1009, 2006  相似文献   

19.
In this research, solvent‐assisted dispersive micro‐SPE was introduced as a simple modified technique for the determination of parabens in water and cosmetic samples. Aminopropyl‐functionalized magnetite nanoparticles (MNPs) were successfully synthesized and applied. GC with photoionization detector was used for the separation and detection of parabens. In this method, hexylacetate (15 μL) as a solvent and aminopropyl‐functionalized MNPs (5 μg) as a sorbent were added to an aqueous sample (10 mL) and then the sample was sonicated. Dispersed magnetite was collected in the bottom of the conical tube by using a strong magnet and then ACN was added as a desorption solvent. Forty microliters of this solvent was transferred into a microvial and then acetic anhydride and pyridine were added, thus derivatization was performed by acetic anhydride. After evaporation, 1 μL of derivatized sample was injected into a gas chromatograph for analysis. Several important parameters, such as kind of organic solvent, desorption solvent and volume, amount of aminopropyl‐functionalized MNPs and effect of salt addition were investigated. Under optimum conditions, the limits of detection achieved were between 50 and 300 ng/L, with RSDs (n = 5) lower than 8%. Under the optimum conditions, the enrichment factors ranged from 217 to 1253 and the extraction recoveries ranged from 10 to 62%. The recoveries were obtained for the analytes in river water and mouthwash solution and hand cream in the range of 87–103%. The advantages of proposed method are simplicity of operation, rapidity, high extraction yields, and environmental friendly character.  相似文献   

20.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号