首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a novel chitosan‐based polymeric network was synthesized by crosslinking with a naturally occurring crosslinking agent—genipin. The results showed that the crosslinking reactions were pH‐dependent. Under basic conditions, genipin underwent a ring‐opening polymerization prior to crosslinking with chitosan. The crosslink bridges consisted of polymerized genipin macromers or oligomers (7 ~ 88 monomer units). This ring‐opening polymerization of genipin was initiated by extracting proton from the hydroxyl groups at C‐1 of deoxyloganin aglycone, followed by opening the dihydropyran ring to conduct an aldol condensation. At neutral and acidic conditions, genipin reacted with primary amino groups on chitosan to form heterocyclic amines. The heterocyclic amines were further associated to form crosslinked networks with short chains of dimmer, trimer, and tetramer bridges. An accompanied reaction of nucleophilic substitution of the ester group on genipin by the primary amine group on chitosan would occur in the presence of an acid catalysis. The extent in which chitosan gels crosslinked with genipin was significantly dependent on the crosslinking pH values: 39.9 ± 3.8% at pH 5.0, 96.0 ± 1.9% at pH 7.4, 45.4 ± 1.8% at pH 9.0, and 1.4 ± 1.0% at pH 13.6 (n = 5, p < 0.05). Owing to the different crosslinking extents and different chain lengths of crosslink bridges, the genipin‐crosslinked chitosan gels showed significant difference in their swelling capability and their resistance against enzymatic hydrolysis, depending on the pH conditions for crosslinking. These results indicated a direct relationship between the mode of crosslinking reaction, and the swelling and enzymatic hydrolysis properties of the genipin‐crosslinked chitosan gels. The ring‐opening polymerization of genipin and the pH‐dependent crosslinking reactions may provide a novel way for the preparation and exploitation of chitosan‐based gels for biomedical applications. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1985–2000, 2005  相似文献   

2.
Poly(N‐isopropylacrylamide) (PNIPAAm) gels are temperature‐responsive polymer gels; and were prepared by redox polymerization of N‐isopropylacrylamide in the presence of N,N′‐methylenebisacrylamide as a crosslinking reagent and core‐shell type bioconjugates, which were core‐crosslinked polyion complex micelles formed from the mixture of bovine pancreas trypsin and poly(ethylene glycol)‐block‐poly(α,β‐aspartic acid). The phase transition temperature of PNIPAAm gels was no change with physically immobilization of bioconjugates. Also, the enzymatic activity of bioconjugates was essentially maintained even in PNIPAAm gels, although enzymatic reaction rate was apparently controlled by temperature, i.e., by the degree of swelling of PNIPAAm gels. Further, the control of enzymatic reaction synchronizing the phase transition of PNIPAAm gels immobilized bioconjugates. PNIPAAm gels could immobilize core‐shell type bioconjugates, and were successfully prepared without interfering with the properties of temperature‐responsive polymer gels and the bionanoreactor. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5942–5948, 2007  相似文献   

3.
At the start of our research program concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article deals with the polyaddition crosslinking reaction leading to PU network formation. Therefore, 2‐methacryloyloxyethyl isocyanate (MOI) was radically copolymerized with methyl methacrylate (MMA) in the presence of CBr4 as a chain‐transfer agent. The resulting poly(MMA‐co‐MOI)s, having pendant isocyanate (NCO) groups as novel multifunctional polyisocyanates, were used for polyaddition crosslinking reactions with ethylene glycol as a typical diol. The second‐order rate constants depended on both the functionality of poly(MMA‐co‐MOI) and the NCO group concentration. The actual gel points were compared with the theoretical ones calculated according to Macosko's equation; the deviation of the actual gel point from the theoretical value became more remarkable for a greater functionality of poly(MMA‐co‐MOI) and at a lower NCO group concentration or at a lower poly(MMA‐co‐MOI) concentration. These are discussed mechanistically, with consideration given to the significance of intramolecular cyclization and intramolecular crosslinking reactions leading to the shrinkage of the molecular size of the prepolymer, along with the data of the intrinsic viscosities of resulting prepolymers and the swelling ratios of resulting gels. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 606–615, 2003  相似文献   

4.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

5.
As part of our continuing studies concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article explores the polyaddition crosslinking reactions of multifunctional poly(methyl methacrylate‐co‐2‐methacryloyloxyethyl isocyanate) [poly(MMA‐co‐MOI)] [MMA/MOI = 90/10] with various diols leading to PU network formation. Thus, the equimolar polyaddition crosslinking reactions of poly(MMA‐co‐MOI) with ethylene glycol (EG), 1,6‐hexane diol, and 1,10‐decane diol (DD) were carried out in N‐methyl pyrrolidone at a 0.25 mol/L isocyanate group concentration at 80 °C. The second‐order rate constants decreased from EG to DD. The deviation of the actual gel point from the theoretical one was smaller from EG to DD. The intrinsic viscosity of resulting prepolymer demonstrated almost no variation with progressing polymerization for the EG system, whereas it gradually increased with conversion for the DD system. Close to the gel point conversion it increased rather drastically for both systems. The swelling ratio of resulting gel was higher from EG to DD. These are discussed mechanistically in terms of the significant occurrence of intramolecular cyclization and intramolecular crosslinking reactions leading to shrinkage of the molecular size. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3243–3248, 2003  相似文献   

6.
This work demonstrates the successful incorporation of functionalized single‐walled carbon nanotubes (f‐SWCNTs) into the phenylboronate‐diol crosslinked polymer gel to create a hybrid system with reversible sol–gel transition. The phenylboronic acid‐containing and diol‐containing polymers were first separately prepared by the reversible addition–fragmentation chain transfer polymerization. Covalent functionalization of single‐walled carbon nanotubes (SWCNTs) with an azide‐derivatized, diol‐containing polymer was then accomplished by a nitrene addition reaction. Subsequently, the hybrid gels were prepared by crosslinking the mixture of f‐SWCNTs and diol‐containing polymer with the phenylboronic acid‐containing polymer. The hybrid gel has been characterized by scanning electron microscopy (SEM) and rheological analysis. The SEM measurement demonstrated a homogeneous dispersion of f‐SWCNTs within the gel matrices. Rheological experiments also demonstrated that the hybrid gel exhibited storage moduli significantly higher than those of the native gel obtained from the phenylboronic acid‐containing and diol‐containing polymers. The hybrid gel can be switched into their starting polymer (f‐SWCNTs) solutions by adjusting the pH of the system. Moreover, the hybrid gel revealed a self‐healing property that occurred autonomously without any outside intervention. By employing this dynamic character, it is possible to regenerate the used gel, and thus, it has the potential to perform in a range of dynamic or bioresponsive applications Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

8.
Multiwalled carbon nanotubes grafted with vinyl immidazolium‐based ionic liquid (MWCNT‐IL) were synthesized and utilized as a crosslinking agent for the preparation and evaluation of a polymeric gel as a new class of organic solvent absorbent. Based on our earlier organic solvent‐absorbents, the present polymeric gel exhibited high organic solvent absorbency, fast organic solvent absorption rate, and good reusability. To prepare such polymeric gel, radical polymerization was carried out with dodecyl methacrylate and butyl acrylate as comonomers, MWCNT‐ILs as crosslinking agent, and azoisobutyronitrile as initiator, providing polymeric gel in a quantitative yield. The polymeric gel synthesized under the optimized polymerization conditions absorbed 79 times the dry weight in CCl4, 57 times in toluene, 96 in CHCl3, and 100 times in CH2Cl2. The reusability of the prepared‐polymeric gel was also checked which established that the gels could be recycled and reused for at least 10 times. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3166–3172  相似文献   

9.
Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared‐layer metal–organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis‐dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties.  相似文献   

10.
The effects of pigments contained in N‐isopropylacrylamide (NIPAM) gels on their volume‐change properties were investigated. All the NIPAM gel particles, containing various kinds and concentrations of pigments, showed a volume phase transition at 34 °C. No pigment affected the volume‐phase‐transition temperature of the NIPAM gels. As the concentration of the pigment in the NIPAM gels was increased, the amount of the volume change of the NIPAM gels was reduced. The water absorptivity of the NIPAM gels in the swollen state decreased as the pigment concentration increased, whereas the water absorptivity in the shrunken state was almost constant. Reducing the initial monomer concentration of the polymerization of the NIPAM gel increased the water absorptivity in the swollen state. With an increase in the water absorptivity, the volume changes of the NIPAM gels containing pigments were increased. Prototype light modulators in which the NIPAM gel particles containing pigment were dispersed between glass plates were fabricated. The light modulator using the gel particles with improved diameter change (d/d0 = 2.3, where d and d0 are the equilibrium diameter and the diameter of the fully shrunken state at 50 °C, respectively) exhibited a larger transmittance change from 8 to 79% than that using the gel particles before the improvement (d/d0 = 1.7; from 38 to 79%) according to temperature changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4644–4655, 2006  相似文献   

11.
Cyclohexylcarbodiimidoethyl methacrylate (CCEMA) and t‐butylcarbodiimidoethyl methacrylate (t‐BCEMA) were prepared in a two‐step synthesis. These monomers were then used to prepare carbodiimide‐functionalized PBMA and PEHMA latex particles, employing two‐stage emulsion polymerization, with the carbodiimide–methacrylate monomers being introduced only in the second stage under monomer‐starved conditions. During emulsion polymerization, the carbodiimide moiety ( NCN ) was found to be unstable at pH 4, but stable when the pH of the dispersion was increased to 8, using NaHCO3 as the buffer. Survival of  NCN group against hydrolysis during the polymerization, and during storage in the dispersion, was enhanced by using EHMA as the comonomer (more hydrophobic) and the t‐butyl carbodiimide derivative. The t‐butyl group provides more steric hindrance to the hydrolysis reaction. A decrease in the reaction temperature from 80°C to 60°C was also found to increase the extent of  NCN group incorporation during emulsion polymerization. Under ideal conditions, more than 98% of the  NCN groups in the monomer feed are successfully incorporated into the latex. When these latex particles are mixed with a  COOH containing latex and allowed to dry, polymer diffusion leading to crosslinking occurs. Films annealed at 60°C reach a gel content of 60% in 10 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 855–869, 2000  相似文献   

12.
The potential to improve mechanical, structural, and mechanochemical properties of charge‐functionalized poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA)‐based hybrid cryogels is investigated. The simple and versatile synthesis of hybrid cryogels with high strength and toughness using cationic DMAEMA and ionic comonomer 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid has been proposed via in situ free‐radical crosslinking (cryo)polymerization by which the properties of virgin polymer can be modulated to required applications by incorporation of inorganic filler kaolin (KLN). Two factors affecting swelling and elasticity of hybrid gels (referred as PDA/KLNm), KLN content and gel preparation temperature, are studied. The optimum KLN concentration for desired swelling and modulus of elasticity is determined as 0.80% (w/v). Effective crosslinking density of hybrid hydrogels increases with KLN addition and this dependence is expressed by a quadratic polynomial as a function of KLN concentration. The results show that obtained hybrid gels with multiresponsive properties could be regarded as “smart materials” in sensing and actuation applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1758–1778  相似文献   

13.
Novel electro‐conductive and mechanically‐tough double network polymer hydrogels (E‐DN gels) were synthesized by polymerization of 3, 4‐ethylenedioxythiophene in the presence of a double network hydrogel (DN gel) matrix. The E‐DN gels showed not only excellent mechanical performance, having a fracture stress of 1.4–2.1 MPa, but also electrical conductivity as high as 10?3 S cm?1, both under dry and water‐swollen states. The fracture stress and fracture energy of the E‐DN gel was increased by 1.7 and 3.4 times, respectively, as compared with the DN gel. From scanning electron microscope and AFM observations, it was found that electro‐conductive poly(3,4‐ethylenedioxythiophene) (PEDOT) was incorporated into DN gel matrix, apparently due to the formation of a poly‐ion complex with sulfonic acid group of the DN gel network. Thus, PEDOT incorporated into the DN gel matrix greatly improves not only electronic conductivity, but also mechanical properties, reinforcing the double network gel matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
Thermoresponsive pNIPA (poly (N‐isopropylacrylamide)) gels modified with dopamine methacrylamide were synthesized using free‐radical polymerization. In this way, the catechol groups were introduced into the polymer network. The presence of dopamine in the gel led to a significant shift in the volume phase transition temperature (VPTT). It was found that hydrogels were electroactive and that oxidation of catechol groups also led to a strong shift in the VPTT. The temperature window, that is, the range of temperature where volume of the gel could be substantially changed by oxidation of the catechol groups, for the gel formed from the polymerization solution containing 5% of the dopamine derivative, was 30–40 °C. Additionally, the influence of Fe3+ ions, which form the most stable complexes with dopamine, on swelling behavior of the gels was investigated at various pH. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3236–3242  相似文献   

15.
This article describes the results of experiments examining the competition between the polymer diffusion rate and the crosslinking rate in low‐glass‐transition‐temperature, epoxy‐containing latex films in the presence of a diamine. We examined films formed from donor‐ and acceptor‐labeled poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate) copolymer latex and studied the influence of several parameters on the growth rate of gel content and the rate of polymer diffusion. These factors include the molecular weight of the latex polymer, the presence or absence of a diamine crosslinking agent, and the cure protocol. The results were compared to the predictions of a recent theory of the competition between crosslinking and polymer diffusion across interfaces. In the initially formed films, polymer diffusion occurs more rapidly than the chemical reaction rate. Therefore, these films fall into the fast‐diffusion category of this model. In our system (unlike in the model), the latex polymer has a broad distribution of molecular weights and a distribution of diffusivities. The shortest chains contribute to the early time diffusion that we measure. At later stages of our experiment, slower diffusing species contribute to the signal that we measure. The diffusion time decreases substantially, and we observe a crossover to a regime in which the chemical reaction dominates. The increases in chain branching and gel formation bring polymer diffusion to a halt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4098–4116, 2002  相似文献   

16.
Mechanical initiation of polymerization offers the chance to generate polymers in new environments using an energy source with unique capabilities. Recently, a renewed interest in mechanically controlled polymerization has yielded many techniques for controlled radical polymerization by ultrasound. However, other types of polymerizations induced by mechanical activation are rare, especially for generating high‐molecular‐weight polymers. Herein is an example of using piezoelectric ZnO nanoparticles to generate free‐radical species that initiate chain‐growth polymerization and polymer crosslinking. The fast generation of high amounts of reactive radicals enable the formation of polymer/gel by ultrasound activation. This chemistry can be used to harness mechanical energy for constructive purposes in polymeric materials and for controlled polymerizations for bulk‐scale reactions.  相似文献   

17.
Polyhedral oligomeric silsesquioxane hybrid temperature and pH double‐responsive hydrogels with organic–inorganic co‐crosslinked networks are synthesized by in situ, free‐radical polymerization of N‐isopropylacrylamide and dimethylaminoethyl methacrylate in the presence of both organic crosslinker N,N′‐methylenebis(acrylamide) (BIS) and inorganic crosslinker octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) in tetrahydrofuran media. The resulting hydrogels (OR‐OvP gels) display obvious temperature and pH double responsiveness, OvPOSS particles dispersed in polymer make a dominant effect on the properties of gels. With the increase of OvPOSS, the aggregation of particles on nano‐ or microscale happens and causes a considerable change on the properties of gels, such as the lower critical solution temperature and better compression strength. Specially, the interconnected microporous structure of gels ascribed to the microphase separation results in faster deswelling rate, which makes the gel become attractive. Besides, the crosslink by BIS intensifies the heterogeneity of gels significantly, which could also be used to adjust the properties of gels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1494–1504  相似文献   

18.
The work reported here demonstrates an approach to the fabrication of chemically reactive and topographically patterned hydrogels using the azlactone‐functionalized polymer poly(2‐vinyl‐4,4'‐dimethylazlactone) (PVDMA) and the hydrophilic diamine Jeffamine®. Gels were initially assembled in DMSO but can be subsequently transferred into aqueous media to form hydrogels. Spectroscopic characterization of assembled gels demonstrated that variation in the stoichiometric ratio of azlactones to amines during gel synthesis permits control over the extent of crosslinking in the gels. Residual azlactones not consumed during crosslinking can be exploited to further functionalize these gels with hydrophobic, hydrophilic, and macromolecular amines that influence the physicochemical properties of these materials in aqueous solvents. The surface and bulk of these gels can be differentially functionalized (i.e., different functional groups on the gel surface relative to the bulk) by taking advantage of different rates of diffusion of macromolecular amines versus small molecule amines into assembled gels. Finally, these azlactone‐functionalized gels can be topographically patterned with microwell arrays using a replica molding technique and chemically modified postfabrication with amine nucleophiles. This reactive approach to the fabrication of topographically patterned and chemically functionalized hydrogels offers a straightforward method for the rapid synthesis of micropatterned scaffolds of interest in a broad range of applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3185–3194  相似文献   

19.
Crosslinking copolymerization of butyl methacrylate with a small amount of divinylbenzene (DVB) was carried out using single‐electron transfer‐living radical polymerization initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/N‐ligand in N,N‐dimethylformamide to produce a highly oil‐absorbing gel. The polymerization, gelation process, and oil‐absorbing properties were studied in detail. Analysis of monomer conversion with reaction time showed that the polymerization followed first‐order kinetics for both linear and crosslinking polymerization before gelation. Higher levels of DVB led to earlier gelation and the influence of N‐ligand on gelation was also significant. Under optimal conditions, oil absorption of the prepared gel to chloroform could reach 42.1 g·g?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3233–3239  相似文献   

20.
An improved kinetic model for the radical polymerization of N‐vinyl‐pyrrolidone (NVP) in aqueous medium is developed. Quantum chemical simulations reveal that the transfer to polymer is of minor importance whereas the transfer to monomer by hydrogen abstraction in 3‐position of the pyrrolidone ring leads to a radical with a double bond which initiates a new chain bearing a terminal double bond (TDB). The resulting dead chains with one, two, or more TDB are the main source for a strong increase of molar mass in batch reactors at high conversion due to long chain branching and crosslinking. This can be a source for gel formation and fouling in continuous reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号