首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The impact behaviour of self-reinforced polypropylene (PP) composites was studied. α and β polymorphs of isotactic PP homopolymer and random copolymer (with ethylene) were used for matrix materials, whereas the reinforcement was a fabric woven from highly stretched split PP yarns. The composite sheets were produced by the film-stacking method and consolidated by hot pressing at 5 and 15 °C above the melting temperature (Tm) of the matrix-giving PP grade. The composite sheets were subjected to static tensile, dynamic falling weight impact and impact tensile tests at room temperature. Dynamic mechanical thermal analysis (DMTA) was also performed on the related composites and their constituents. The results indicated that the β-modification of the PP homopolymer is more straightforward than that of the PP copolymer. Stiffness and strength usually increased while the toughness (tensile impact strength, perforation impact energy) decreased with increasing temperature of consolidation. This was assigned to differences in the failure mode based on fractographic results.  相似文献   

2.
Magnesium hydroxide [Mg(OH)2] nanocrystals with excellent dispersity and good crystallinity were efficiently synthesized through the ultrasonic and hydrothermal synergetic effect. The morphology, structure, and thermochemistry of Mg(OH)2 nanocrystals were researched by TEM, XRD, FT-IR, and DTA, respectively. The mechanism of ultrasonic–hydrothermal synergistic effect was discussed. In addition, Mg(OH)2 nanocrystals were added into polypropylene (PP) to form composite materials, and the mechanical properties of Mg(OH)2–PP composites were investigated. Compared with the other two Mg(OH)2 PP composites, the Mg(OH)2–PP composite had the best mechanical property when the Mg(OH)2 was synthesized by ultrasonic–hydrothermal route.  相似文献   

3.
The intumescent flame retardant (IFR) filled polypropylene (PP) composites were prepared using a twin‐screw extruder. The tensile and impact fracture behavior of the composites were measured at room temperature. It was found that the Young's modulus increased roughly, while the tensile strength decreased slightly with increasing the IFR weight fraction; the toughening effect of the filler on the PP resin was significant. Both the V‐notched Izod impact strength and the V‐notched Charpy impact strength of the PP/IFR composites showed a nonlinear increase with increasing the filler weight fraction (φf) as φf was less than 20%, then it decreased. The limited oxygen index of the composites increases nonlinearly with increasing φf. The relationship between them obeyed a quadratic equation. The impact fracture surface was observed by means of a scanning electronic microscope to understand the toughening mechanisms for the composite systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Self‐reinforced composites based on commercial polypropylene (PP) woven fabrics and a random PP copolymer modified with quartz were obtained by film stacking. The effect of the incorporation of quartz on the materials fracture and failure behavior was studied through uniaxial tensile tests and quasi‐static fracture experiments. Acoustic emission analysis was also performed in situ in the tensile tests. A higher consolidation quality was obtained for the composites containing quartz. In the composite with random PP modified with 5 wt% quartz, the higher consolidation and the better dispersion of quartz particles positively impacted on the materials tensile and fracture behavior. From the results of acoustic emission analysis, fiber fracture appears as the dominant failure mechanism in the investigated composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The crystallization and melting behavior of PP/Mg(OH)2 composites was investigated, and the crystallization kinetic parameters and thermal characteristics were investigated according to the Avrami method. Optical polarizing microscope (POM) analysis suggested that the presence of Mg(OH)2 particles gave rise to an increase in the number of nuclei and a decrease in PP spherulitic size. The Avrami exponent n of the PP and composites increased with increasing crystallization temperature, and markedly deceased with the addition of low Mg(OH)2 content. A significant increase in crystallization kinetic constant, and a decrease in crystallization half time of PP were observed in the presence of Mg(OH)2 particles, indicating a heterogeneous nucleating effect of Mg(OH)2 upon crystallization of PP. The melting temperature and equilibrium melting temperature of PP in the composites decreased with increasing the Mg(OH)2 content, which is directly related to the size of the PP crystals. The difference of PP melting enthalpies in the PP and composites demonstrated that the presence of Mg(OH)2 can effectively enhance the crystalline of PP. The crystallization thermodynamics of PP and composites were studied according to the Hoffman theory. Surface free energy of PP chain folding for crystallization of PP/Mg(OH)2 composites was lower than that of PP, confirming the heterogeneous nucleation effect of Mg(OH)2. However, the evaluation of the nucleation activation energy of PP suggested the presence of a large amount of Mg(OH)2 particles in the PP matrix reduced the mobility of PP segments and restricted the development of PP nucleation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1914–1923, 2005  相似文献   

6.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

7.
The effects of elastomer type on morphology, flammability and rheological properties of high‐impact polystyrene/Mg(OH)2 based on encapsulated by polystyrene have been investigated. The ternary composites characterized by cone calorimetry, horizontal burning rate, limiting oxygen index (LOI), rheology and SEM. Morphology was controlled using poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock copolymer (SEBS) or the corresponding maleinated SEBS (SEBS‐g‐MA). As revealed by SEM observations, composites of HIPS/SEBS/Mg(OH)2 exhibit separation of the filler and elastomer and good adhesion between SEBS and the filler, whereas composites of HIPS/SEBS‐g‐MA/Mg(OH)2 exhibit encapsulation of the filler by SEBS‐g‐MA. The flame retardant and rheological properties of ternary composites were strongly dependent on microstructure. The rheological test showed that the composites with encapsulation structure exhibit a stronger solid‐like response at low frequency than those of the composites with separate dispersion structure. The combustion tests showed that the composites with encapsulation structure showed higher flame retardant properties than those of separate dispersion structure at optimum use level of SEBS‐g‐MA. However, with the increase of the content of SEBS‐g‐MA, the flame retardancy of the composite declined somewhat which can be explained that the SEBS‐g‐MA coating acts as a heat and mass transfer barrier due to the formation of encapsulation structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2023–2030, 2007  相似文献   

8.
In this work, elastomer‐toughened polypropylene (PP)/magnesium hydroxide (MH) composites with ethylene–octene copolymer (POE) were prepared in a twin‐screw extruder and then injection‐molded. The structure, mechanical properties, phase morphology, and rheological behaviors of PP/POE/MH ternary composites were studied. The mechanical properties and fracture behaviors of PP/POE/MH ternary composites are strongly influenced by the incorporation of POE copolymer. The addition of POE causes a significant improvement in the impact strength of the composites, from 3.6 kJ/m2 in untoughened composites to 47.4 kJ/m2 in PP composites containing 30 phr POE. This indicates that POE is very effective in converting brittle PP composites into tough composites. Conversely, the tensile strength and the Young's modulus of the composites decrease with respect to the PP composites, as the weight fraction of POE is increased to 40 phr. Scanning electron microscopy (SEM) study shows a two‐phase morphology where POE, as droplets, is dispersed finely and uniformly in the PP matrix. The rheological behaviors show that the interfacial interaction in the composites is enhanced with increase in POE content. Interparticle interactions give rise to the formation of interparticle network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Bulk rigid-rod molecular composites were successfully obtained by powder consolidation of a copolymer containing both the reinforcing rigid-rod segments and the thermoplastic matrix. By chemically linking the reinforcing segments and the matrix molecule, the copolymer was designed to minimize phase separation in the molecular composite. The copolymer was an articulated rigid-rod poly(p-phenylenebenzobisthiazole), aPBT, with an aromatic poly(ether ketone), mPEK, thermoplastic pendant grafted at the points of articulation. The copolymer powder was pre-formed and compression molded at an elevated temperature, which resulted in bulk rigid-rod molecular composites with three-dimensionally isotropic properties. Compared to the neat mPEK homopolymer, significant increases in glass transition temperature Tg and tensile properties have been realized for the aPBT-g(mPEK) copolymers with low rod content. Taking into account the aspect ratio of the aPBT, the bulk rigid-rod molecular composite showed a tensile modulus as predicted by the Halpin-Tsai equation. In addition, x-ray scattering revealed minimal rod aggregation. However, for the copolymer of higher rod content, significant phase separation was observed in the copolymer powder, which resulted in a decrease in Tg as well as reinforcement efficiency of the bulk rigid-rod molecular composite as compared to those derived from the copolymers of low rod content. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
《先进技术聚合物》2018,29(1):111-120
In the present paper, different self‐reinforced polypropylene (PP) composites based on low‐cost commercial woven (w) and non‐woven (nw) fabrics were obtained. Hot compaction (HC) and film stacking (FS) followed by compression molding were used to prepared the composites. The fracture and failure behavior of the different materials was determined under different testing conditions through quasi‐static uniaxial tensile tests, Izod impact experiments and by means of fracture mechanics tests on mode I double‐edge deeply notched tensile specimens. In the case of the composite obtained by film stacking + compression molding (rPP/nw/w‐FS) and the hot‐compacted composite (nw/w‐HC) containing simultaneously woven and non‐woven fabrics, the acoustic emission technique was applied in situ in the tensile tests to determine their consolidation quality and to identify the failure mechanisms responsible for their fracture behavior. It was observed that both composites exhibited relatively similar high consolidation quality. However, the hot‐compacted composite presented a more uniform distribution of failure mechanisms (debonding and fiber fracture) than the film‐stacked composite. The hot‐compacted composite containing both types of reinforcements exhibited the best combination of mechanical (tensile, impact, and fracture) properties. Therefore, this composite appeared as the most promising for structural applications among the different composites investigated.  相似文献   

11.
The apparent melt shear viscosity of polypropylene (PP) composites filled with aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) was measured by means of a melt flow rate instrument under experimental conditions of temperature ranging from 170 to 195 °C and load varying from 2.16 to 12.5 kg, to identify the effects of particle size and content. The results showed that the melt shear flow of the composites obeyed the power law under the experimental conditions, the dependence of the melt apparent shear viscosity (ηa) on temperature was consistent with the Arrhenius equation, and the sensitivity of the ηa for the composite melts to temperature increased with addition of flame retardant. The ηa of the composites decreased with increasing apparent shear rate. The ηa increased with an increase of the content of flame retardant, but this rate of increase decreased with a rise of temperature or load. When the particle size of flame retardant was smaller than 5 μm, the ηa of the composites increased with increase of particle size of flame retardant, and then reduced with a further increase of particle size of flame retardant.  相似文献   

12.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The objectives of this paper are to study the crystallization behavior and fracture characteristics of spherical alumina (Al2O3) nanoparticle‐filled polypropylene (PP) composites. Nanocomposites containing 1.5–5.0 wt % of the Al2O3 nanoparticles (pretreated with silane coupling agent) were prepared for this investigation. Wide angle X‐ray diffraction (WAXD) results show that a small amount of β‐crystal of PP forms after adding the Al2O3 nanoparticles. According to differential scanning calorimetric (DSC) and optical microscopy (OM) measurements, the Al2O3 nanoparticles make PP spherulite size reduced and crystallization temperature of PP enhanced, by acting as effective nucleating agents. However, there are no obvious differences in the crystallinity for the virgin PP and the Al2O3/PP nanocomposites. Tensile test shows that both the Young's modulus and the yield strength of the Al2O3/PP nanocomposites increase with the particle content increasing, suggesting that the interfacial interaction between the nanoparticles and PP matrix is relatively strong. Under quasi‐static loading rate, the fracture toughness (KIC) of the Al2O3/PP nanocomposites was found to be insensitive to nanoparticle content. Under impact loading rate, the Izod impact strength and the impact fracture toughness (Gc) indicate that the impact fracture toughness increases initially with the addition of 1.5 wt % of the Al2O3 nanofillers into the PP matrix. However, with the further addition of up to 3.0 and 5.0 wt % nanoparticles, both the Izod impact strength and impact Gc change very little. By observing the single‐edge‐double‐notch (SEDN) specimens with optical microscopy after four point bending (4PB) tests, it was found that numerous crazes and microcracks form around the subcritical crack tip, indicating that crazing and microcracking are the dominant fracture mechanisms. Scanning electron microscopy (SEM) observation confirms this result. In addition, when the strain rate of 4PB tests was increased, some wave‐like branches were formed along the fractured edge for the Al2O3/PP nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3652–3664, 2005  相似文献   

14.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Phase structure of composite polypropylene (PP)/ethylene–propylene–rubber (EPR)/coated nano‐CaCO3 composites, used in the manufacture of bumpers, with and without compatibilizers has been investigated using scanning electron microscopy (SEM), dynamic mechanical analysis (DMA) mechanical tests, and differential scanning calorimetry (DSC). Blends of various compositions were prepared using a corotating twin‐screw extruder. The experimental results indicated that the dispersion of nanoparticles in (PP/EPR) depends on their surface (stearic acid and fatty acid coatings). In both cases, the final morphology is the core–shell structure in which EPR acts as the shell part encapsulating coated nano‐CaCO3. In this case, EPR‐g‐MAH copolymer does not improve the interface between (PP/EPR) and nanoparticles but PEP propylene ethylene copolymer should be preferentially localized at the interface of PP and (EPR/nano‐CaCO3) phases generating an improved adherence, which will ensure a better cohesion of the whole material. According to the nature of the compatibilizers and surface treatment, it is believed that the synergistic effect of both the EPR elastomer and CaCO3 nanoparticles should account for the balanced performance of the ternary composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of thermal history on static mechanical properties and impact fracture behavior of three reactor polypropylene impact-copolymers (ICPPs) was investigated for three ICPPs prepared using commercial Innovene®, Unipol® and Spheripol® polymerization technologies. Multiple extrusion employing a co-rotating twin-screw extruder resulted in a significant reduction of the molecular weight of the PP homopolymer phase evidenced by the increasing melt flow index (MFI). Neither cross-linking of the ethylene-propylene rubber (EPR) phase nor EPR particle coarsening was detected for any of the ICPPs after 5 consecutive extrusions. Decreasing molecular weight of the PP homopolymer phase caused change in the crystalline morphology of injection molded specimens due to the change in crystallization kinetics and reduction of the number of tie molecules, however, the overall degree of crystallinity did not change, significantly. The static tensile mechanical properties (E, σy, ?b), critical strain energy release rate, Gc, and the Charpy notched impact strength, ak, decreased with increasing MFI in a monotonous manner for all the ICPPs investigated. Despite significant differences between the absolute values of the mechanical properties for the three ICPPs, the MFI dependence of the σy and Gc relative to that for the unaffected ICPP fell on a single master curve for all of them. High-speed digital camera, used to follow the fracture process during the instrumented impact test, revealed no significant change of the small scale yielding fracture process with increasing MFI. This was in an agreement with the negligible change in the size of the crack tip plastic zone, Rp, predicted using simple mixed mode fracture model. The plane strain value of the critical strain energy release rate, G1c, calculated from the measured Gc for the INN (2.4 kJ/m2), UNI (2.8 kJ/m2) and SPH (3.5 kJ/m2) using a simple LEFM model did not exhibit significant dependence on the number of extruder passes. The observed differences between the three ICPPs were ascribed to the significantly larger EPR content in UNI compared to the other two ICPPs and significantly larger content of isotactic PP homopolymer in the INN compared to the remaining two ICPPs.  相似文献   

17.
The aim of this work is to study the influence of the filler fraction and that of the filler/matrix interfacial adhesion on the mechanical properties and on the fracture behaviour of a poly(methyl methacrylate) PMMA (for injection moulding). The variation of the tensile and flexural mechanical properties with the filler volume fraction was determined. The changes in the fracture behaviour produced by the fillers were studied by evaluating the KIC and GIC parameters of the LEFM (Linear Elastic Fracture Mechanics) by carrying out tests with SENB geometry at room temperature and low strain rates. After fracture surfaces examination by SEM (Scanning Electron Microscopy), it was found that the surface treatment had been rather effective and that the fracture toughening mechanism was multiple crazing.  相似文献   

18.
An experimental study was carried out to investigate the effects of isopropoxy tri(dioctyl pyrophosphoryl) titanatecoupling agent on the mechanical performance, rheological property and microstructures of polyethylene highly loaded withaluminum hydroxide (Al(OH)_3) composite. It was found that the addition of coupling agent results in reduced tensile strengthand increased percentage elongation of the filled systems. Silane crosslinkable polyethylene substituting for polyethylene asmatrix improves the tensile strength of the composite, while the percentage elongation of the composite still remains at adesired level. Melt viscosity of the composite will be improved by addition of titanate coupling agent. Microstructures of thecomposites were also studied by means of the scanning electron microscopy (SEM) technique. SEM micrographs reveal thatfiner dispersion of Al(OH)_3 will be obtained upon treatment of titanate and a transition from brittle to tough fracture takesplace before and after silane crosslinking structure is introduced into polyethylene highly filled with Al(OH)_3 composite.  相似文献   

19.
In order to promote better understanding of the structure‐mechanical properties relationships of filled thermoplastic compounds, the molecular orientation and the degree of crystallinity of injection molded talc‐filled isotactic polypropylene (PP) composites were investigated by X‐ray pole figures and wide‐angle X‐ray diffraction (WAXD). The usual orientation of the filler particles, where the plate planes of talc particles are oriented parallel to the surface of injection molding and influence the orientation of the α‐PP crystallites was observed. The PP crystallites show bimodal orientation in which the c‐ and a*‐axes are mixed oriented to the longitudinal direction (LD) and the b‐axis is oriented to the normal direction (ND). It was found that the preferential b‐axis orientation of PP crystallites increases significantly in the presence of talc particles up to 20 wt% in the composites and then levels‐off at higher filler content. WAXD measurements of the degree of crystallinity through the thickness of injection molded PP/talc composites indicated an increasing gradient of PP matrix crystallinity content from the core to the skin layers of the molded plaques. Also, the bulk PP crystallinity content of the composites, as determined by DSC measurements, increased with talc filler concentration. The bulk crystallinity content of PP matrix and the orientation behavior of the matrix PP crystallites and that of the talc particles in composites are influenced by the presence of the filler content and these three composite's microstructure modification factors influence significantly the flexural moduli and the mechanical stiffness anisotropy data (ELD/ETD) of the analyzed PP/talc composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The fracture toughness of blends of nylon‐6 with maleated ethylene–propylene rubber and maleated styrene/hydrogenated butadiene/styrene triblock copolymer was investigated with a single‐edge‐notched three‐point‐bending instrumented Dynatup test. The blends for which the rubber particle size was less than 0.7 μm fractured in a ductile manner over the whole range of ligament lengths, whereas the blends with particles larger than 0.7 μm showed a ductile‐to‐brittle transition with the ligament length. In this regime, ductile fracture was observed for specimens with short ligaments, whereas brittle fracture was seen for those with long ligaments. The ductile fracture behavior was analyzed with the essential‐work‐of‐fracture model, whereas linear elastic fracture mechanics techniques were used to analyze the brittle fracture behavior. The fact that the ductile fracture energy was larger for the blends with the styrene/hydrogenated butadiene/styrene triblock copolymer than for those with ethylene–propylene rubber was due to the larger dissipative energy density of the blends based on the styrene/hydrogenated butadiene/styrene triblock copolymer. Both the critical strain energy release rate (GIC) and the plane‐strain critical stress intensity factor (KIC) increased as the rubber particle size decreased for both blend systems. The GIC and KIC parameters had similar values, regardless of the rubber type, when the rubber particle size was fixed. The transition ligament length was near the size criterion for plane‐strain conditions for both blend systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1739–1758, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号