首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and reliable analytical method suitable for the simultaneous determination of the antiepileptic drug, oxcarbazepine and its metabolites in human plasma and saliva by means of liquid chromatography with diode array detection (DAD) has been developed. Oxcarbazepine and its metabolites (10,11-dihydro-10-hydroxycarbamazepine, trans-10,11-dihydro-10,11-dihydroxycarbamazepine and 3-hydroxycarbamazepine) were baseline separated within 6.5 min on a reversed-phase C18 column with a phosphate buffer-acetonitrile-triethylamine mixture as the mobile phase. The DAD detector was set at 240 nm. A sample preparation method for biological samples using a microextraction by packed sorbent technique has been implemented, employing a C18 sorbent inserted into a microvolume syringe and using only a small volume (25 μL) of plasma or saliva. The extraction yield values were satisfactory for all analytes (>86.5%) as well as the precision data, which were always in the low percentage of relative standard deviation values (<4.6%). The method was successfully applied to both plasma and saliva samples drawn from psychiatric and neurological patients undergoing treatment with oxcarbazepine (Tolep®) tablets.  相似文献   

2.
For the first time, a simple, selective and accurate high-performance liquid chromatography method with ultraviolet detection was developed and validated to quantify simultaneously three structurally related antiepileptic drugs; carbamazepine, oxcarbazepine, and the recently launched eslicarbazepine acetate and their main metabolites, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and licarbazepine. The method involves a solid-phase extraction and a reverse-phase C18 column with 5 cm length. The mobile phase consisting of water, methanol, and acetonitrile in the ratio 64:30:6 was selected as the best one and pumped at 1 mL/min at 40 °C. The use of this recent column and an aqueous mobile phase instead of buffers gives several advantages over the method herein developed; namely the fact that the chromatographic analysis takes only 9 min. The method was validated according to the guidelines of the Food and Drug Administration, showing to be accurate (bias within ±12%), precise (coefficient variation <9%), selective and linear (r 2 > 0.997) over the concentration range of 0.05–30 μg/mL for carbamazepine; 0.05–20 μg/mL for oxcarbazepine; 0.15–4 μg/mL for eslicarbazepine acetate; 0.1–30 μg/mL for carbamazepine-10,11-epoxide; 0.1–10 μg/mL for 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and 0.1–60 μg/mL for licarbazepine. It was also shown that this method can adequately be used for the therapeutic drug monitoring of the considered antiepileptic drugs, carbamazepine, oxcarbazepine, eslicarazepine acetate, and their metabolites.  相似文献   

3.
Abstract

A rapid, sensitive and simple to operate HPLC method for the simultaneous determination of carbamazepine, carbamazepine 10,11-epoxide and 10,11-dihydro-10,11-trans-dihydroxycarbamazepine in plasma is described. The drug and its metabolites are extracted from plasma using commercially available reversed-phase octadecylsilane bonded-silica columns (Bond Elut C18, 2.8 ml capacity). Separation was achieved by reversed-phase chromatography, using a mobile phase consisting of acetonitrile - methanol - water (19:37:44) at a flow-rate of 1.8 ml/min in conjunction with a Waters Assoc. Nova-Pak C18 column. The analytical column, in Radial-Pak cartridge form, was used in combination with a Waters Assoc. Z-module RCSS and protected by a Waters Assoc. Guard-Pak precolumn module containing a Guard-Pak μBondapak C18 insert. Using ultraviolet detection at 214 nm, levels in the region of 50–100 ng/ml for CBZ and its metabolites can be measured with only 250 μl of plasma. The method has been used to determine steady-state concentrations of the drug and its metabolites in paediatric patients.  相似文献   

4.
A rapid, sensitive and simple to operate high-performance liquid chromatographic method for the simultaneous determination of carbamazepine (CBZ) and carbamazepine 10,11-epoxide (CBZ-EP) in plasma and saliva is described. The drug and its metabolite are extracted from both plasma and saliva using commercially available reversed-phase octadecylsilane bonded silica columns (Bond-Elut C18, 2.8 ml capacity). Separation of CBZ and CBZ-EP was achieved by reversed-phase chromatography, using a mobile phase consisting of acetonitrile-methanol-water (19:37:44) at a flow-rate of 1.8 ml/min in conjunction with a Nova-Pak C18 column. The analytical column, in Radial-Pak cartridge form, was used in combination with a Z-module RCSS and protected by a Guard-Pak precolumn module containing a Guard-Pak mu Bondapak C18 insert. Using ultraviolet detection at 214 nm, levels in the region of 50-100 ng/ml for CBZ and CBZ-EP can be measured with only 250 and 500 microliters of plasma and saliva, respectively. The method, which has been used to determine steady-state concentrations of the drug and its metabolite in paediatric patients receiving CBZ monotherapy, is also suitable for pharmacokinetic studies.  相似文献   

5.
Eslicarbazepine acetate (BIA 2-093) is a novel central nervous system drug undergoing clinical phase III trials for epilepsy and phase II trials for bipolar disorder. A simple and reliable chiral reversed-phase HPLC-UV method was developed and validated for the simultaneous determination of eslicarbazepine acetate, oxcarbazepine, S-licarbazepine and R-licarbazepine in human plasma. The analytes and internal standard were extracted from plasma by a solid-phase extraction using Waters Oasis HLB cartridges. Chromatographic separation was achieved by isocratic elution with water-methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LichroCART 250-4 ChiraDex (beta-cyclodextrin, 5 microm) column at 30 degrees C. All compounds were detected at 225 nm. Calibration curves were linear over the range 0.4-8 microg/mL for eslicarbazepine acetate and oxcarbazepine, and 0.4-80 microg/mL for each licarbazepine enantiomer. The overall intra- and interday precision and accuracy did not exceed 15%. Mean relative recoveries varied from 94.00 to 102.23% and the limit of quantification of the assay was 0.4 microg/mL for all compounds. This method seems to be a useful tool for clinical research and therapeutic drug monitoring of eslicarbazepine acetate and its metabolites S-licarbazepine, R-licarbazepine and oxcarbazepine.  相似文献   

6.
A reliable micellar electrokinetic chromatographic method for the determination of oxcarbazepine and its two main metabolites, 10-hydroxycarbamazepine and 10,11-trans-dihydroxy-10,11-dihydroxycarbamazepine, in human plasma was developed. The separation and determination of the analytes was achieved using a system consisting of 60 mM SDS in phosphate buffer (30 mM, pH 8.0), to which 20% (v/v) methanol was added. Separation was carried out in an uncoated fused-silica capillary with a separation voltage of 25 kV and currents typically less than 40 microA. Spectrophotometric detection was at 205 nm. Isolation of oxcarbazepine and its metabolites from plasma was accomplished by a solid-phase extraction procedure. The mean extraction yield of the analytes from plasma was higher than 94%. The linear correlation coefficients were better than 0.994 for all analytes. The limit of detection was 0.05 microg/mL, the limit of quantitation 0.15 microg/mL. The repeatability for the spiked blank plasma samples was lower than 1.9% and the intermediate precision lower than 2.1%, both expressed as RSD%. The results obtained analysing real plasma samples from epileptic patients under therapy with Tolep were satisfactory in terms of precision, accuracy and detectability.  相似文献   

7.
A sensitive method based on high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of carbamazepine (CBZ) and one of its active metabolites, carbamazepine-10,11-epoxide (CBZ-E) in human plasma. CBZ, CBZ-E and the internal standard (IS) 10,11-dihydrocarbamazepine were extracted from human plasma into methyl tert-butyl ether. CBZ, CBZ-E and the IS were successfully separated on an RP C18 column with a mobile phase of acetonitrile:methanol:water (18:19:63, v/v/v) and monitored via UV detection at 210 nm. The calibration curves were linear over the concentration ranges of 0.01–10 μg/mL for CBZ and 0.005–5 μg/mL for CBZ-E in human plasma, respectively. The method displayed excellent sensitivity, precision and accuracy, and was successfully applied to the quantification of CBZ and CBZ-E in human plasma after oral administration of a single 200 mg CBZ CR tablet. This method is suitable for bioequivalence studies following single doses given to healthy volunteers.  相似文献   

8.
A simple, rapid, and high‐throughput liquid chromatography with tandem mass spectrometry method for the simultaneous quantitation of ten antiepileptic drugs in human plasma has been developed and validated. The method required only 10 μL of plasma. After simple protein precipitation using acetonitrile, the analytes and internal standard diphenhydramine were separated on a Zorbax SB‐C18 column (50 × 4.6 mm, 2.7 μm) using acetonitrile/water as the mobile phase at a flow rate of 0.9 mL/min. The total run time was 6 min for each sample. The validation results of specificity, matrix effects, recovery, linearity, precision, and accuracy were satisfactory. The lower limit of quantification was 0.04 μg/mL for carbamazepine, 0.02 μg/mL for lamotrigine, 0.01 μg/mL for oxcarbazepine, 0.4 μg/mL for 10‐hydroxycarbazepine, 0.1 μg/mL for carbamazepine‐10,11‐epoxide, 0.15 μg/mL for levetiracetam, 0.06 μg/mL for phenytoin, 0.3 μg/mL for valproic acid, 0.03 μg/mL for topiramate, and 0.15 μg/mL for phenobarbital. The intraday precision and interday precision were less than 7.6%, with the accuracy ranging between –8.1 and 7.9%. The method was successfully applied to therapeutic drug monitoring of 1237 patients with epilepsy after administration of standard antiepileptic drugs. The method has been proved to meet the high‐throughput requirements in therapeutic drug monitoring.  相似文献   

9.
The new anti-epileptic drug oxcarbazepine is temperature-labile and decomposes under the conditions of gas chromatography, even when injected into a cooled, inert, fused-silica capillary column. In contrast, the trimethylsilyl derivative of oxcarbazepine is stable. The bis-trimethylsilyl derivatives of the enol of oxcarbazepine and of its active metabolite, 10-hydroxycarbazepine, and the tris-trimethylsilyl derivative of carbazepine-10,11-trans-diol can be synthesized easily at room temperature. Using the readily available carbamazepine as internal standard, a simple gas chromatographic assay was developed for the simultaneous routine measurement of these three compounds at therapeutic levels. This assay is ten times more sensitive to oxcarbazepine than the previously described high-performance liquid chromatographic assays. It involves a single-step solvent extraction, uses a fused-silica capillary column and a flame ionization detector. On processing 0.5 ml of plasma, limits of detection of 10 ng/ml were obtained for oxcarbazepine and 10-hydroxycarbazepine and a limit of detection of 25 ng/ml for carbazepine-10,11-trans-diol.  相似文献   

10.
An improved high-performance liquid chromatographic method for the simultaneous determination of caffeine and its N-demethylated metabolites in plasma is described. Excellent resolution of all components is provided by reversed-phase chromatography using a mobile phase consisting of 1% acetic acid-methanol (83:17) at a flow-rate of 2.7 ml/min, in conjunction with a Waters Assoc. Nova-Pak C18 column which was protected by a Waters Assoc. Guard-Pak precolumn module containing a Guard-Pak CN cartridge. Rapid extraction of caffeine and the dimethylxanthines from plasma was achieved using reversed-phase octadecylsilane bonded-silica columns (Bond-Elut C18). With only 100 microliters of sample, plasma levels in the region of 50 ng/ml for the dimethylxanthines and 100 ng/ml for caffeine can be determined using ultraviolet detection at 273 nm. The method has been used for measuring umbilical cord plasma samples to provide information regarding foetal exposure to caffeine and its metabolites and is also suitable for therapeutic drug monitoring of caffeine and theophylline levels in the treatment of neonatal apnoea.  相似文献   

11.
A rapid method was developed for the analysis of the insecticide (A) diazinon (O,O-diethyl O-2-isopropyl-6-methylpyridimidinyl) phosphorothioate, its metabolites (B) diazoxon (O,O-diethyl O-2-isopropyl-6-methylpyridimidinyl) phosphate, and (C) 2-isopropyl-6-methyl-4-pyrimidinol, the insecticide (D) permethrin [3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid (3-phenoxyphenyl)methylester], its metabolites (E) m-phenoxybenzyl alcohol, and (F) m-phenoxybenzoic acid, the insect repellent (G) DEET (N,N-diethyl-m-toluamide), and its metabolites (H) m-toluamide and (I) m-toluic acid in rat plasma and urine. The method is based on using C18 Sep-Pak cartridges (Waters Corporation, Milford, Mass., U.S.A.) for solid phase extraction and high performance liquid chromatography with a reversed phase C18 column, and absorbance detection at 230 nm for compounds A, B, and C, and at 210 nm for compounds D-I. The compounds were separated using a gradient from 1% to 99% acetonitrile in water (pH 3.0) at a flow rate ranging between 1 and 1.7 mL/min in a period of 17 min. The limits of detection were ranged between 20 and 100 ng/mL, while limits of quantification were 80-200 ng/mL. The relationship between peak areas and concentration was linear over a range of 100-1000 ng/mL. This method was applied to determine the above insecticides and their metabolites following dermal administration in rats.  相似文献   

12.
A high-performance liquid chromatographic method was developed, validated and applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and its acetylated metabolite (acetyl-5-ASA) in human plasma. The method involves liquid-liquid extraction with methanol followed by isocratic reversed-phase chromatography on a Kromasil KR100 C(18) column with electrochemical detection. The recovery, selectivity, linearity, precision and accuracy of the method were evaluated from spiked human plasma samples. The effects of mobile phase composition, buffer concentration, mobile phase pH and concentration of organic modifiers on retention of 5-ASA, acetyl 5-ASA and internal standard were investigated. Limits' of detection were 5 ng/mL for 5-ASA and 10 ng/mL for acetyl-5-ASA, respectively. The method can be used for supporting therapeutical drug monitoring and pharmacokinetic studies.  相似文献   

13.
A rapid and sensitive reversed-phase high-performance liquid chromatographic method (RP-HPLC) with ultraviolet detection has been developed for the determination of moclobemide and its metabolites, p-chloro-N-(-2-morpholinoethyl)benzamide N'-oxide (Ro 12-5637) and p-chloro-N-[2-(3-oxomorpholino)ethyl]-benzamide (Ro 12-8095), in human plasma. The assay was performed after single liquid-liquid extraction with dichloromethane at alkaline pH using phenacetin as the internal standard. Chromatographic separation was performed on a C(18) column using a mixture of acetonitrile and water (25:75, v/v), adjusted to pH 2.7 with ortho-phosphoric acid, as mobile phase. Spectrophotometric detection was performed at 239 nm. The method has been validated for accuracy, precision, selectivity, linearity, recovery and stability. The quantification limit for moclobemide and Ro 12-8095 was 10 ng/mL, and for Ro 12-5637 was 30 ng/mL. Linearity of the method was confirmed for the range 20-2500 ng/mL for moclobemide (r = 0.9998), 20-1750 ng/mL for Ro 12-8095 (r = 0.9996) and 30-350 ng/mL for Ro 12-5637 (r = 0.9991). Moreover, within-day and between-day precisions and accuracies of the method were established. The described method was successfully applied in pharmacokinetic studies of parent drug and its two metabolites after a single oral administration of 150 mg of moclobemide to 20 healthy volunteers.  相似文献   

14.
Abstract

We propose a simple procedure for the simultaneous determination of the anticonvulsants oxcarbazepine, carbamazepine and three of their metabolites (10-hydroxy-10, 11-dihydro-carbamazepine, trans-10, 11-dihydroxy-10, 11-dihydro-carbamazepine and 10, 11-epoxy-carbamazepine) in serum or plasma. The alkalinized sample is extracted with ethyl acetate. The extract is evaporated to dryness and taken up with the mobile phase. An aliquot is injected into the liquid chromatograph and eluted with water/methanol/acetonitrile (55/40/5, by vol.) on a 5-μm C-18 reversed-phase column. Eluent is monitored at 254 nm. No interference by other anticonvulsants or by endogenous constituents from the sample is observed. Owing to its good precision, specificity, sensitivity, and selectivity, this method is well adapted to the therapeutic monitoring of oxcarbazepine or carbamazepine treated patients, as well as for pharmacokinetic studies.  相似文献   

15.
Midazolam (MDZ), a short-acting benzodiazepine, is a widely accepted probe drug for CYP3A phenotyping. Published methods for its analysis have used either therapeutic doses of MDZ, or, if employing lower doses, were mostly unable to quantify the two hydroxy metabolites. In the present study, a sensitive and specific liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantitative determination of MDZ and two of its metabolites (1'-hydroxymidazolam (1'-OHMDZ) and 4-hydroxymidazolam (4-OHMDZ)) in human plasma and oral fluid. After liquid-liquid extraction with hexane/dichloromethane (73:27, v/v), the analytes were separated on a Luna C18(2) (100 x 2.1 mm) analytical column using gradient elution. Detection was achieved using tandem mass spectrometry on an ion trap mass spectrometer. Midazolam-d6 was used as internal standard for quantification. The calibration curves were linear (R2 >0.998) between 0.05 and 20 ng/mL for MDZ and both metabolites in both matrices. Using 1 mL samples, the limit of detection was 0.025 ng/mL and the limit of quantification was 0.05 ng/mL for MDZ and the hydroxy metabolites in both matrices. Intra- and inter-day accuracies, determined at three different concentrations, were between 92.1 and 102.3% and the corresponding coefficients of variation were <7.3%. The average recoveries were 90.6%, 86.7% and 79.0% for MDZ, 1'-OHMDZ and 4-OHMDZ in plasma and 95.3%, 96.6% and 86.8% for MDZ, 1'-OHMDZ and 4-OHMDZ, respectively, in oral fluid. The method was successfully applied to a pharmacokinetic study, showing that MDZ and its hydroxy metabolites can be determined precisely in in vivo samples obtained following a single oral or intravenous dose of 2 mg MDZ. The method appears to be useful for CYP3A phenotyping in plasma using sub-therapeutic MDZ doses, but larger studies are needed to test this assumption.  相似文献   

16.
A simple, sensitive, selective and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of atorvastatin and its active metabolites ortho-hydroxyatorvastatin and para-hydroxyatorvastatin in human plasma using rosuvastatin as internal standard (IS). Following simple liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 559/440 for atorvastatin, m/z 575/466 for ortho-hydroxyatorvastatin, m/z 575/440 for para-hydroxyatorvastatin and m/z 482/258 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for atorvastatin and its two metabolites in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of atorvastatin, ortho-hydroxyatorvastatin, para-hydroxyatorvastatin and the IS from spiked plasma samples were 54.2 +/- 3.2, 50.1 +/- 3.8, 65.2 +/- 3.6 and 71.7 +/- 2.7%, respectively. A run time of 2.5 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

17.
A simple, sensitive and cost-effective HPLC-UV bioanalytical method for determination of lopinavir (LPV) in rat and human plasma was developed and validated. The plasma sample preparation procedure includes a combination of protein precipitation using cold acetonitrile and liquid–liquid extraction with n-hexane–ethyl acetate (7:3, v/v). A good chromatographic separation was achieved with a Phenomenex Gemini column (C18, 150 mm × 2.0 mm, 5 μm) at 40°C with gradient elution, at 211 nm. Calibration curves were linear in the range 10–10,000 ng/mL, with a lower limit of quantification of 10 ng/mL using 100 μL of plasma. The accuracy and precision in all validation experiments were within the criteria range set by the guidelines of the Food and Drug Administration. This method was successfully applied to a preliminary pharmacokinetic study in rats following an intravenous bolus administration of LPV. Moreover, the method was subsequently fully validated for human plasma, allowing its use in therapeutic drug monitoring (TDM). In conclusion, this novel, simple and cost-efficient bioanalytical method for determination of LPV is useful for pharmacokinetic and drug delivery studies in rats, as well as TDM in human patients.  相似文献   

18.
A highly sensitive liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of midazolam and its major metabolites 1'-hydroxymidazolam and 4-hydroxymidazolam in human plasma was developed and validated. Stable isotope-labeled midazolam-D(4) and 1'-hydroxymidazolam-D(4) were used as internal standards. Compounds were extracted from 0.5 mL plasma by liquid-liquid extraction with ethyl acetate-heptane (1:4). Chromatography was achieved using a Sunfire C(18) column. The mobile phase was a gradient with 10 m m formic acid in Milli-Q water and methanol at a flow rate of 0.3 mL/min. Total run time was 10 min. Detection was performed using a tandem mass spectrometer with positive electrospray ionization. Calibration curves were linear over the range of 0.10-50.0 ng/mL for midazolam and 0.025-25.0 ng/mL for both metabolites. For all compounds the lower limit of quantification was 0.10 ng/mL. Imprecision was assessed according to the NCCLS EP5-T guideline and was below 10% for all compounds. Mean recoveries were between 94 and 109% for midazolam and its metabolites. The validated method was successfully applied in a pharmacokinetic study investigating in vivo CYP3A-activity in a large cohort of renal allograft recipients using sub-therapeutic doses of midazolam as a drug-probe.  相似文献   

19.
Summary New quinidine metabolites, including 10,11-dihydrodiol quinidine N-oxide, 10,11-dihydrodiol quinidine and their glucuronides, were found in human urine. A quinidine monitoring HPLC method including these metabolites, is proposed by the direct injection of body fluid samples onto the precolumn for deproteinization followed by reverse phase separation in the analytical column with a column switching technique. The recovery of spiked quinidine and its metabolites in plasma was quantitative (98–102%) with good reproducibility (C.V.: 1.6–4.0%). Several clinical samples such as whole blood and urine were analyzed by the present method.  相似文献   

20.
This paper describes a rapid, quantitative liquid chromatographic analysis and extraction of methadone and its two major metabolites from rat plasma, using difenoxin as the internal standard. Using a C18 column, resolution of all sample components and the internal standard is achieved with a mobile phase of 25:75 acetonitrile-0.08% diethylamine in 1000 mL water, pH 2.3, at a flow rate of 1.5 mL/min. The injection volume is 100 microL. Standards are linear over the range 25-100 ng, with a lower limit of detection for methadone of 0.25 ng. Within- and between-run coefficients of variation (CV) are 1.24% and 2.94%, respectively. Extraction of methadone and its metabolites from rat plasma uses a solid-phase extraction technique that is highly efficient. Extraction efficiencies of 90.3%, 99.6%, 85.9% and 93.8% were achieved for methadone, its primary and secondary metabolites, and difenoxin, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号