首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition phase of PtN from zincblende (ZB) structure to rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures under high pressure and temperature are obtained through the quasi-harmonic Debye model. The transition phase from the ZB structure to the RS structure occurs at the pressure of 18.2 GPa, which agrees well with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, together with the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

2.
The transition phase of GaN from zincblende (ZB) structure to rocksalt structure (RS) is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures are obtained through the quasi-harmonic Debye model. We find that the transition phase from the ZB structure to the RS structure occurs at the pressure of 42.2 GPa, which is in good agreement with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, as well as the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

3.
The transition phase of GaAs from the zincblende (ZB) structure to the rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures are obtained through the quasi-harmonic Debye model. It is found that the transition from the ZB structure to the RS structure occurs at the pressure of about 16.3\,GPa, this fact is well consistent with the experimental data and other theoretical results. The dependences of the relative volume V/V0 on the pressure P, the Debye temperature \Th and specific heat CV on the pressure P, as well as the specific heat CV on the temperature T are also obtained successfully.  相似文献   

4.
刘丽  韦建军  安辛友  王雪敏  刘会娜  吴卫东 《中国物理 B》2011,20(10):106201-106201
The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.  相似文献   

5.
ZnS结构相变、电子结构和光学性质的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李建华  崔元顺  曾祥华  陈贵宾 《物理学报》2013,62(7):77102-077102
运用第一性原理平面波赝势和广义梯度近似方法, 对闪锌矿结构(ZB)和氯化钠结构(RS) ZnS的状态方程及其在高压下的相变进行计算研究, 分析相变点附近的电子态密度、能带结构和光学性质的变化机理. 结果表明: 通过状态方程得到ZB相到RS相的相变压强值为18.1 GPa, 而利用焓相等原理得到的相变压强值为18.0 GPa; 在结构相变过程中, sp3轨道杂化现象并未消失, RS相ZnS的金属性明显增强; 与ZB相ZnS相比, RS相ZnS的介电常数主峰明显增强, 并向低能方向出现了明显偏移, 使得介电峰向低能方向拓展, 在低能区电子跃迁大大增强. 关键词: 硫化锌 相变 电子结构 光学性质  相似文献   

6.
We study the pressure-induced phase transition of wurtzite ZnS using a constant pressure ab initio technique. A first-order phase transition into a rocksalt state at 30–35 GPa is observed in the constant pressure simulation. We also investigate the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy–volume calculations and Gibbs free energies at zero temperature and find that both structures show nearly similar equations of state and transform into a rocksalt structure around 14 GPa, in agreement with experiments. Additionally, we examine the influence of pressure on the electronic structure of the wurtzite and zinc-blende ZnS crystals and find that their band gap energies exhibit similar tendency and increase with increasing pressure. The calculated pressure coefficients and deformation potential are found to be comparable with experiments.  相似文献   

7.
ZnS nanotetrapods synthesized via a solvothermal route have a octahedral core with a zincblende (ZB) structure and four hexprism-shaped arms consisting of alternately stacking ZB and wurtzite (WZ) phases, where the WZ phase has a higher volume percentage. In situ angular-dispersive X-ray diffraction (ADXRD) measurements were carried out to study the structural behavior of ZnS nanotetrapods under high pressure up to 41.3?GPa. The initial WZ structure exhibits a very high mechanical stability to ~11.3?GPa. Both the WZ and ZB structures transform to the rocksalt (RS) structure at ~15.4?GPa. The bulk moduli of the WZ (148.2?±?8.9?GPa) and RS (165.6?±?9.9?GPa) phases are both larger than the previously reported values. These phenomena are discussed based on the alternating epitaxial growth of the WZ and ZB phases in the arms of nanotetrapods. Our study suggests that the internal structure of nanomaterials could also greatly affect their stability and transition behavior.  相似文献   

8.
In this work, the pressure induced phase transition of InAs is investigated by density functional theory. The first-order phase transition of InAs from zinc-blende (ZB) to the rocksalt (RS) structure occurs at 4.9 GPa accompanies by a 26% volume collapse. It is found that the nearest In and As atoms bonded as covalent bond, but there is no strong interaction between the nearest In–In or As–As atoms. Crystal space of ZB structure is occupied by tetrahedrons (4 In–As covalent bonds) partly with many interstice, and crystal space of RS is fulfilled by close-packed octahedrons (6 In–As covalent bonds). With increasing pressure, rebuild of covalent bond due to variations of electronic structure causes phase transition from ZB to RS structure. Furthermore, directional changes of covalent bond along [100] and [110] bring evident variation of shear on the {100} and {110} planes.  相似文献   

9.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC), whereby charge density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse-spinel phase. The CC transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure the CC-transition temperature increases with pressure, reaching 300 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

10.
 利用高压原位角散X射线衍射实验研究了ZnSe纳米带的结构稳定性。发现样品在12.6 GPa 附近存在一个从立方闪锌矿型到立方岩盐矿型的结构相变,并且在相变点附近存在较大的体积收缩,相对体积变化率达13%。利用Birch-Murnaghan 状态方程拟合,得到了闪锌矿相的体弹模量约为56 GPa,略低于体材料的体弹模量(约67 GPa);并得到其立方岩盐矿相的体弹模量约为116 GPa。高压拉曼散射实验结果表明,横光学声子模散射峰在5.5 GPa压力附近发生劈裂,纵光学声子模散射峰在12.8 GPa压力以上逐渐消失。根据角散实验的体弹模量数据,计算得到了闪锌矿相中对应不同声子模式的格林爱森常数。  相似文献   

11.
Cd0.5Mn0.5Te is a semimagnetic semiconductor, which crystallizes in the zinc-blende structure (ZB) and exhibits a magnetic spin glass like transition at 21 K. Under pressure it shows a first-order phase transition around 2.6 GPa to the NaCl like structure. In this work, the pressure cycled method using a Paris–Edinburgh cell up to 8 GPa has been applied to Cd0.5Mn0.5Te samples in order to obtain recovered nanocrystals. The nanoparticles have been characterized by EDX and electron microscopy. The X-ray and electron diffraction results confirmed the existence of nanocrystals in the ZB phase with an average size of 7 nm. Magnetization measurements made in the range of 2–300 K at low field show that the temperature of the magnetic transition decreases when the crystallites’ size is reduced.  相似文献   

12.
Zn1−XMnXS (X=0.85% and 1.26%) nanoparticles have been synthesized using a specially designed equipment and we have studied the influence of doping Mn2+ on the surface energy of ZnS. The high pressure behaviors of ZnS nanocrystals with different dopant contents have been investigated using angle-dispersive synchrotron X-ray powder diffraction up to 45.1 GPa. Theoretical calculations show that doping with Mn2+ increases the surface energy of the nanocrystals. The theoretical result has been further corroborated by our experimental observation of an increase in the phase transition pressure of Mn2+ doped ZnS nanocrystals in diamond-anvil-cell studies.  相似文献   

13.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC) whereby charge-density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse spinel phase. The CC-transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure, the CC-transition temperature increases with pressure, reaching 350 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

14.
The room-temperature Raman and infrared spectra of zirconium vanadate (ZrV 2O7) were observed up to pressures of 12 GPa and 5.7 GPa, respectively. The frequencies of the optically active modes at ambient pressure were calculated using direct methods and compared with experimental values. Average mode Grüneisen parameters were calculated for the Raman and infrared active modes. Changes in the spectra under pressure indicate a phase transition at ∼1.6 GPa, which is consistent with the previously observed α (cubic) to β (pseudo-tetragonal) phase transition, and changes in the spectra at ∼4 GPa are consistent with an irreversible transformation to an amorphous structure.  相似文献   

15.
The electronic structures and magnetic properties of Fe16N2 system and their pressure dependence were investigated by using first-principles calculations based on the density functional theory. It has been found that the total magnetic moment in Fe16N2 system decreases monotonically as increasing pressure from 0 to 14.6 GPa. A phase transition from ferromagnetic (FM) to non-magnetic (NM) occurs with a volume collapse of around 0.008  at 14.6 GPa, The lattice constants a and c for magnetic results decrease monotonically as pressure increasing from 0 to 14.6 GPa, at 14.6 GPa, the lattice constant a decreases sharply, on the contrary, the lattice constant c increases abruptly. We think that the change of microscopic structure of Fe16N2 is responsible for the phase transition from FM to NM.  相似文献   

16.
The pressure dependence of elastic properties of ZnS in zinc-blende (ZB) and wurtzite (WZ) structures are investigated by the generalized gradient approximation (GGA) within the plane-wave pseudopotential density functional theory (DFT). Our results are in good agreement with the available experimental data and other theoretical results. From the high-pressure elastic constants obtained, we find that the ZB and WZ structures of ZnS are unstable when the applied pressures are larger than 15.8 GPa and 21.3 GPa, respectively. The sound velocities along different directions for the two structures are also obtained. It is shown that as pressure increases, the sound velocities of the shear wave decrease, and those of all the longitudinal waves increase. An analysis has been made to reveal the anisotropy and highly noneentral forces in ZnS.  相似文献   

17.
利用平面波密度泛函理论研究了ZnSe从闪锌矿结构到盐石结构的相变.结果发现通过H相等得到的相变压力为16.8 GPa,与通过高压弹性常数值判断所得到的结果相符.  相似文献   

18.
The electronic and optical properties of boron arsenide (BAs) in the zinc-blende (ZB) and rock-salt (RS) phases have been studied by the density functional theory (DFT) method based on the generalized gradient approximation (GGA). Using the enthalpy-pressure data, the structural phase transition from ZB to RS is observed at 141 GPa. Our calculated electronic properties show that ZB-BAs is a semiconductor, whereas RS-BAs is a semi-metal. Calculations of the dielectric function and absorption coefficient have been performed for the energy range 0-30 eV. The dependence of pressure on band structure and optical spectra is also investigated. The results are compared with available theoretical and experimental data.  相似文献   

19.
We present a synchrotron X-ray diffraction study of pressure-induced changes in nanocrystalline anatase (with a crystallite size of 30-40 nm) to 35 GPa. The nanoanatase was observed to a pressure above 20 GPa. Direct transformation to the baddeleyite-TiO2 polymorph was seen at 18 GPa. A fit of the pressure versus volume data to a Birch-Murnaghan equation yielded the following parameters: zero-pressure volume, V0=136.15 Å3, bulk modulus, KT=243(3) GPa, and the pressure derivative of bulk modulus, K′=4 (fixed). The bulk modulus value obtained for the nanocrystalline anatase is about 35% larger than that of the macrocrystalline counterpart.  相似文献   

20.
The structural and magnetic properties of ErMn2H4.6 have been studied by X-ray and neutron diffraction up to the pressures of 15 and 6 GPa, respectively. In the pressure range 0<P<3 GPa we observe a first-order phase transition to new high-pressure (HP) phase. The HP phase has the same hexagonal unit cell as the ambient-pressure phase but smaller lattice parameters (ΔV/V=−5%). The structural transition results in suppression of the long-range antiferromagnetic order. Our results suggest that pressure changes positions of the hydrogen atoms in the metal host. We speculate that the new arrangement of hydrogen atoms induces spin frustration and, therefore, suppresses long-range magnetic order in the HP phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号