首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

2.
A study of surface and interface properties of reconstructed Au-SiC(0 0 0 1) surfaces is reported. Two reconstructions were prepared on SiC(0 0 0 1), a √3 × √3R30° and a Si-rich 3 × 3, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 3 × 3 surface the existence of three stable reconstructions 2√3 × 2√3R30°, 3 × 3 and 5 × 5 are revealed after deposition of Au layers, 4-8 Å thick, and annealing at progressively higher temperatures between 500 and 950 °C. For the 2√3 surface two surface shifted Si 2p components are revealed and the Au 4f spectra clearly indicate silicide formation. The variation in relative intensity for the different core level components with photon energy suggests formation of an ordered silicide layer with some excess Si on top. Similar core level spectra and variations in relative intensity with photon energy are obtained for the 3 × 3 and 5 × 5 phases but the amount of excess Si on top is observed to be smaller and an additional weak Si 2p component becomes discernable.For the √3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 3 × 3 surface and only one stable reconstruction, a 3 × 3 phase, is observed at similar annealing temperatures.  相似文献   

3.
Epitaxial islands grown on various substrates are usually strained because of differences in lattice constants of the materials of the island and the substrate. Shape transition in the growth of strained islands has been proposed as a mechanism for strain relief and a way to form self-organized quantum wires. Shape transition usually leads to an elongated island growth. However, an elongated island growth may also be due to an anisotropic diffusion of material, the anisotropy being imposed by the symmetry of the substrate surface. In the present example, growth of gold silicide wire-like nanostructures on a Si(1 1 0) surface has been investigated by photoemission electron microscopy (PEEM). Growth of elongated unidirectional gold silicide islands, with an aspect ratio as large as 12:1, has been observed by PEEM following gold deposition on the Si substrate and subsequent annealing at the Au-Si eutectic temperature. Distribution of the width and the length of the gold silicide islands as a function of island area shows a feature similar to that for the shape transition. However, detailed investigations reveal that the elongated growth of gold silicide islands is rather mainly due to anisotropic diffusion of gold due to the twofold symmetry of the (1 1 0) surface of the Si substrate.  相似文献   

4.
The size distribution and shape transition of self-assembled vanadium silicide clusters on Si(1 1 1) 7 × 7 have been investigated by scanning tunneling microscopy. Nanoclusters were formed by submonolayer vanadium deposition at room temperature followed by subsequent annealing (solid phase epitaxy - SPE). At room temperature, initially V-nanoclusters are formed which occupy sites avoiding the corner hole parts of the unit cells in the Si(1 1 1) 7 × 7 surface. Upon annealing, strong metal-silicon reaction occur leading to the formation of vanadium silicide nanoclusters. As a function of temperature, both, flat (2D) and three dimensional (3D) clusters have been obtained. After annealing at temperatures around 900 K many faceted clusters are created, whereas at higher annealing temperature, around 1300 K, predominantly 3D clusters are formed. The size distribution of SPE grown clusters could be well controlled in the range of 3-10 nm. The cluster size depends on the annealing temperature as well as on the initial vanadium coverage. Based on high resolution STM images a structure model for one kind of vanadium disilicide clusters exposing atomically flat surfaces was proposed.  相似文献   

5.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

6.
Y. Fukaya  A. Kawasuso 《Surface science》2007,601(22):5187-5191
The Au adsorption induced √21 × √21 super-lattice structure on the Si(1 1 1)-√3 × √3-Ag structure has been investigated using reflection high-energy positron diffraction. The height of the Au adatom was determined to be 0.59 Å from the underlying Ag layer from the rocking curve analysis with the dynamical diffraction theory. The adatoms were preferentially situated at the center of the large Ag triangle of the inequivalent triangle structure of the Si(1 1 1)-√3 × √3-Ag substrate. From the intensity distribution in the fractional-order Laue zone, the in-plane coordinate of the Au adatoms was obtained.  相似文献   

7.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

8.
We report on the fabrication of single phase of the Si(1 1 1)-(√31 × √31)-In reconstruction surface, observed by scanning tunneling microscopy (STM) at room temperature. By depositing specific amounts of indium atoms while heating the Si(1 1 1)-(7 × 7) substrate at a critical temperature, the single phase of Si(1 1 1)-(√31 × √31)-In surfaces could be routinely obtained over the whole surface with large domains. This procedure is certified by our high-resolution STM images in the range of 5-700 nm. Besides, the high resolution STM images of the Si(1 1 1)-(√31 × √31)-In surface were also presented.  相似文献   

9.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

10.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

11.
Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 × 1) reconstruction structure changes to a (1 × 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 × 2√3)R30° by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 × 1) and (2√3 × 2√3)R30° surfaces is longer than that on the Au(1 1 1) (23 × 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport.  相似文献   

12.
The structure of the Si(1 1 1)-6 × 1-Ag surface is investigated using crystal truncation rod (CTR) scattering along 00 rod. For the measurement, we developed a manipulator suitable for observing CTR scattering at large momentum transfer perpendicular to the surface. The heights of the silver and reconstructed silicon atoms from the substrate were determined. We also compared the obtained positions with those of the Si(1 1 1)-√3 × √3-Ag surface and found that the heights of those reconstructed atoms are almost the same.  相似文献   

13.
The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 × 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 × √3) R30°, (2 × 2) and a one-dimensional incommensurate (√3 × √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry.  相似文献   

14.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

15.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

16.
Nucleation of 2D islands in Si/Si(1 1 1)-7 × 7 molecular beam epitaxy is studied using scanning tunneling microscopy (STM). A detailed analysis of the population of small amorphous clusters coexisting on the surface with epitaxial 2D islands has been performed. It is shown that small clusters tend to form pairs. The pairs serve as precursors for 2D islands as confirmed by direct STM observations of the smallest 2D islands covering two adjacent half-unit cells of the 7 × 7 reconstruction. It is proved with scaling arguments that the critical nucleus for 2D island formation consists not only of the pair itself, but also includes additional adatoms not belonging to the stable clusters.  相似文献   

17.
In order to grow magnetic layers on silicon substrates, a non-magnetic buffer layer is often needed to avoid silicide formation and to reproduce the perpendicular magnetic anisotropy obtained on metal single crystals, as in the case of Co on Au(1 1 1) and Pt(1 1 1). In this context, we have studied the electrochemical growth of Au buffer layers, and show that it is possible to obtain different film morphologies on hydrogen-terminated vicinal Si(1 1 1) surfaces by varying the electrochemical deposition parameters and solution composition. Two different morphologies have been obtained as observed by atomic force microscopy: continuous 2D Au films (chloride solution at pH 4), and films consisting in flat top 3D Au islands decorating the Si(1 1 1) step edges (cyanide solution at pH 14). X-ray diffraction measurements reveal that the gold layer and islands have Au(1 1 1) orientation and are in epitaxy with the Si(1 1 1) surface. In the case of islands, the lateral facets have also Au(1 1 1) orientation. Results are discussed within a model in which the breaking of the Si-H surface bonds plays a major role in the Au nucleation and growth mechanisms.  相似文献   

18.
We have carried out adsorption and residual thermal desorption experiments of Indium on Si (1 1 1) 7 × 7 reconstructed surface, in the submonolayer regime, in Ultra High Vacuum (UHV) using in situ probes such as Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). The coverage information from AES and the surface symmetry from LEED is used to draw a 2D phase diagram which characterizes each observed superstructural phases. The different superstructural phases observed are Si(1 1 1)7 × 7-In, Si(1 1 1)√3 × √3R30°-In, Si(1 1 1)4 × 1-In, Si(1 1 1)2√3 × 2√3R30°-In and Si(1 1 1)√7 × √3-In in characteristic temperature and coverage regime. In addition to the 1/3 ML, √3 × √3-In phase, we observe two additional √3 × √3-In phases at around 0.6 and 1 ML. Our careful residual thermal desorption studies yields the Si(1 1 1)2√3 × 2√3R30°-In phase which has infrequently appeared in the literature. We probe theoretically the structure of this phase according to the LEED structure and coverage measured by AES, assuming that the model for Si(1 1 1)2√3 × 2√3R30°-In is very proximal to the well established Si(1 1 1)2√3 × 2√3R30°-Sn phase, using ab initio calculation based on pseudopotentials and Density Functional Theory (DFT) to simulate an STM image of the system. Calculations show the differences in the atomic position and charge distribution in the Si(1 1 1)2√3 × 2√3R30°-In case.  相似文献   

19.
The directional elastic peak electron spectroscopy (DEPES) polar profiles for the clean Si(1 1 1)7 × 7 surface and the Si(1 1 1)√ 3 × √3R30°-Ag system are presented. The results were obtained for the and azimuths of the substrate for primary electron energies from the range 0.5-2 keV. A simple qualitative analysis of the observed profiles revealed the influence of the ultra-thin silver layer on the shape of the measured DEPES polar profiles, i.e. both on their background level and on the height of some intensity maxima. Thus, the information on the position of silver atoms in the investigated structure and other ultra-thin layers on crystalline substrates seems to be obtainable by the analysis of the DEPES profiles. The presence of numerous maxima in the measured profiles imply the application of a more advanced method in qualitative and quantitative interpretation of the DEPES profiles.  相似文献   

20.
Y. Fukaya  A. Kawasuso 《Surface science》2006,600(16):3141-3146
The atomic structure of Si(1 1 1)-√21 × √21-Ag surface, which is formed by the adsorption of small amount of Ag atoms on the Si(1 1 1)-√3 × √3-Ag surface, was determined by using reflection high-energy positron diffraction. The rocking curve measured from the Si(1 1 1)-√21 × √21-Ag surface was analyzed by means of the intensity calculations based on the dynamical diffraction theory. The adatom height of the extra Ag atoms from the underlying Ag layer was determined to be 0.53 Å with a coverage of 0.14 ML, which corresponds to three atoms in the √21 × √21 unit cell. From the pattern analyses, the most appropriate adsorption sites of the extra Ag atoms were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号