首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Sanders showed in 1960, within the framework of two-dimensional elasticity, that in any body a certain integral I around a closed curve containing a crack is path-independent. I is equal to the rate of release of potential energy of the body with respect to crack length. Here we first derive, in a simple way, Sanders' integral I for a loaded elastic body undergoing finite deformations and containing an arbitrary void. The strain energy density need not be homogeneous nor isotropic and there may be body forces. In the absence of body forces, for flat continua, and for special forms of the strain energy density, it is shown that I reduces to the well-known vector and scalar path-independent integrals often denoted by J, L, and M.  相似文献   

2.
3.
By applying Noether’s theorem to the elastic energy density in longitudinal shear problem, it is shown that its symmetry-transformations of material space can be expressed by the real and imaginary parts of an analytic function. This kind of the symmetry-transformations leads to the existence of a conservation law in material space, which does not belong to trivial conservation laws and whose divergence-free expression gives a path-independent integral. It is found that by adjusting the analytic function, a finite value can be obtained from this path-independent integral calculated around the material point with any order singularity. For a sharp V-notch placed on the edge of homogenous materials and/or the interface of bi-materials, application shows that the finite value obtained from this path-independent integral is directly related to the notch stress intensity factor (NSIF) and does not depend on the location of integral endpoints chosen respectively along two traction-free surfaces of which form a notch opening angle. Usability is presented in an example to estimate the NSIF of a bi-material plate.  相似文献   

4.
Because of the complexity of piezoelectric crack problems, it is hard to obtain closed-form solutions, and numerical methods are largely resorted to. Hence, the upper/lower bound estimation of piezoelectric fracture parameters is of theoretical and practical importance. in this paper, the path-independent integral I, which is the dual of the J-integral, for electro-mechanical coupling crack systems, is presented. The related bound theorems are established for J and I. Piezoelectric dual finite elements are presented for the numerical implementation of the bound analysis. Moreover, an error estimator is presented for the assessment of numerical accuracy of the piezoelectric fracture parameters.  相似文献   

5.
In this paper, a simple but inberent relation between theL-integral and the Bueckner work conjugate integral is proved for crack problems in isotropic, anisotropic, and dissimilar materials, respectively. It is found that, in the above-mentioned three cases, theL-integral, from the mathematical point of view as well as in principle, arises from Betti's reciprocal theorem. This means that the Bueckner work conjugate integral is a more general path-independent integral than the others since any other path-independent integrals could be derived by using the Bueckner integral while choosing a different subsidiary stress-displacement field.  相似文献   

6.
The J-integral based criterion is widely used in elastic–plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic–plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.  相似文献   

7.
Bueckner‘s work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials. The difficulties in separating Stroh‘s six complex arguments involved in the integral for the dissimilar materials are overcome and then the explicit function representations of the integral are given and studied in detail. It is found that the pseudo-orthogonal properties of the eigenfunction expansion form (EEF) for a crack presented previously in isotropic elastic cases, in isotopic bimaterial cases, and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases. The relation between Bueckner‘s work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stressdisplacement state. Finally, some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.  相似文献   

8.
A numerical method using a path-independent H-integral based on the conservation integral was developed to analyze the singular stress field of a three-dimensional interfacial corner between anisotropic bimaterials under thermal stress. In the present method, the shape of the corner front is smooth. According to the theory of linear elasticity, asymptotic stress near the tip of a sharp interfacial corner is generally singular as a result of a mismatch of the materials’ elastic constants. The eigenvalues and the eigenfunctions are obtained using the Williams eigenfunction method, which depends on the anisotropic materials’ properties and the geometry of an interfacial corner. The order of the singularity related to the eigenvalue is real, complex or power-logarithmic. The amplitudes of the singular stress terms can be calculated using the H-integral. The stress and displacement around an interfacial corner for the H-integral are obtained using finite element analysis. In this study, a proposed definition of the stress intensity factors of an interfacial corner, which includes those of an interfacial crack and a homogeneous crack, is used to evaluate the singular stress fields. Asymptotic solutions of stress and displacement around an interfacial corner front are uniquely obtained using these stress intensity factors. To prove the accuracy of the present method, several different kinds of examples are shown such as interfacial corners or cracks in three-dimensional structures.  相似文献   

9.
Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are described by a density function defined on the crack line. By solving the singular integral equations numerically, the dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs, EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J-integral analysis in piezoelectric bimaterals is also performed. It is found that the path-independent of J1-integral and the path-dependent of J2-integral found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.  相似文献   

10.
This paper deals with the path-independent integrals in non-linear three-dimensional fracture dynamics.Both the nonli-near elastic case and the elastic-plastic case are considered,and some path-independent integrals have been worked out.Forexplaining the physical meaning of these integrals,a speci-men with plane notch is considered,and the relation betweenthe integral and dynamical crack extension force is establish-ed.Thus.such integrals may serve as a fracture criterionin nonlinear fracture dynamics.  相似文献   

11.
The J-integral analysis is presented for the interaction problem between a semi-infinite interface crack and subinterface matrix microcracks in dissimilar anisotropic materials. After deriving the fundamental solutions for an interface crack subjected to different loads and the fundamental solutions for an edge dislocation beneath the interface, the interaction problem is deduced to a system of singular integral equations with the aid of a superimposing technique. The integral equations are then solved numerically and a conservation law among three values of the J-integral is presented, which are induced from the interface crack tip, the microcracks and the remote field, respectively. The conservation law not only provides a necessary condition to confirm the numerical results derived, but also reveals that the microcrack shielding effect in such materials could be considered as a redistribution of the remote J-integral. It is this redistribution that does lead to the phenomenological shielding effect.  相似文献   

12.
A path-independent integral has been stated by Bui in the presence of a straight crack in a two-dimensional deformation field. Such an integral isdual to the Rice integral in the sense that it is based on the complementary stress energy density. Here we establish a boundary-independent integral in finite elasticity from which Bui's result follows as a particular case.
Sommario Un integrale indipendente dal cammino intorno al vertice di una frattura in un campo di deformazione bi-dimensionale è stato stabilito da Bui. Tale integrale èduale all'integrale di Rice, nel senso che si basa sulla densità di energia complementare o degli sforzi. Qui si propone un integrale invariante in un continuo tridimensionale soggetto a deformazioni finite. Si mostra che il risultato di Bui segue come caseo particolare.
  相似文献   

13.
The evaluation of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C1h, can be defined which correlates the near-tip field to the applied load.It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C1h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C1 is the relevant load parameter for predominantly secondary creep of the whole specimen.  相似文献   

14.
The paper analyzes the frictional sliding crack at the interface between a semi-infinite elastic body and a rigid one. It gives solutions in complex form for non-homogeneous loading at infinity and explicit solutions for polynomial loading at the interface. It is found that the singularities at the crack tips are different and that they are related to distinct kinematics at the crack tips. Firstly, we postulate that the geometry of the equilibrium crack with crack-tip positions b and a is determined by the conditions of square integrable stresses and continuous displacement at both crack tips. The crack geometry solution is not unique and is defined by any compatible pair (b,a) belonging to a quasi-elliptical curve. Then we prove that, for an equilibrium crack under given applied load, the “energy release rate” Gtip, defined at each crack tip by the Jε-integral along a semi-circular path, centered at the crack tip, with vanishing radius ε, vanishes. For arbitrarily shaped paths embracing the whole crack, with end points on the unbroken zone, the J-integral is path-independent and has the significance of the rate, with respect to the crack length, of energy dissipated by friction on the crack.  相似文献   

15.
In this paper, we consider path-independent integrals and fracture criteria in nonlinear fracture dynamics. The dynamic effect and crack propagation are included in the discussion. Both nonlinear elastic and elastic-plastic case for crack propagation have been considered, and the related path-independent integrals are proposed. As an example, the steady state propagation of crack has been discussed. Lastly, we give the mechanical meaning of this path-independent integrals as the crack extension force, and make it possible to use the path-independent integrals (as fracture criterion in nonlinear fracture dynamics).This work is supported by TICOM, University of Texas at Austin, U.S.A. The author appreciates the kind help from Prof. J.T. Oden, the Director.  相似文献   

16.
Dislocations and the elastic fields they induce in anisotropic elastic crystals are basic for understanding and modeling the mechanical properties of crystalline solids. Unlike previous solutions that provide the strain and/or stress fields induced by dislocation loops, in this paper, we develop, for the first time, an approach to solve the more fundamental problem—the anisotropic elastic dislocation displacement field. By applying the point-force Green’s function for a three-dimensional anisotropic elastic material, the elastic displacement induced by a dislocation of polygonal shape is derived in terms of a simple line integral. It is shown that the singularities in the integrand of this integral are all removable. The proposed expression is applied to calculate the elastic displacements of dislocations of two different fundamental shapes, i.e. triangular and hexagonal. The results show that the displacement jump across the dislocation loop surface exactly equals the assigned Burgers vector, demonstrating that the proposed approach is accurate. The dislocation-induced displacement contours are also presented, which could be used as benchmarks for future numerical studies.  相似文献   

17.
Fracture of piezoelectromagnetic materials   总被引:12,自引:0,他引:12  
The crack problem in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects is considered. A conservative integral is derived based on the governing equations for magnetoelectroelastic media. Closed-form solution is obtained for an anti-plane crack in an infinite medium. The conservative integral is used to obtain the path-independent integral near the crack tip. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of a crack tip are derived. It is found that the path-independent integral around the crack tip equals the energy release rate. In the absence of applied mechanical loads, the energy release rate is always negative.  相似文献   

18.
The dynamic theory of antiplane piezoelectricity is applied to solve the problem of a line crack subjected to horizontally polarized shear waves in an arbitrary direction. The problem is formulated by means of integral transforms and reduced to the solution of a Fredholm integral equation of the second kind. The path-independent integral G is extended here to include piezoelectric effects, and is evaluated at the crack tip to obtain the dynamic energy release rate. Numerical calculations are carried out for the dynamic stress intensity factor and energy release rate. The material is piezoelectric ceramic.  相似文献   

19.
Material failure by crack propagation essentially involves a concentration of large displacement-gradients near a crack's tip, even at scales where no irreversible deformation and energy dissipation occurs. This physical situation provides the motivation for a systematic gradient expansion of general nonlinear elastic constitutive laws that goes beyond the first order displacement-gradient expansion that is the basis for linear elastic fracture mechanics (LEFM). A weakly nonlinear fracture mechanics theory was recently developed by considering displacement-gradients up to second order. The theory predicts that, at scales within a dynamic lengthscale ℓ from a crack's tip, significant logr displacements and 1/r displacement-gradient contributions arise. Whereas in LEFM the 1/r singularity generates an unbalanced force and must be discarded, we show that this singularity not only exists but is also necessary in the weakly nonlinear theory. The theory generates no spurious forces and is consistent with the notion of the autonomy of the near-tip nonlinear region. The J-integral in the weakly nonlinear theory is also shown to be path-independent, taking the same value as the linear elastic J-integral. Thus, the weakly nonlinear theory retains the key tenets of fracture mechanics, while providing excellent quantitative agreement with measurements near the tip of single propagating cracks. As ℓ is consistent with lengthscales that appear in crack tip instabilities, we suggest that this theory may serve as a promising starting point for resolving open questions in fracture dynamics.  相似文献   

20.
A new method is presented for a systematic evaluation of the effective elastic tensor C(e) in a two-component composite. Both C(e) and local strain field are expanded in terms of a complete set of elastostatic resonances. The resonances are found by calculating eigenstates of a certain integral operator, and this can be carried out in stages. First one finds the eigenstates of individual, isolated grains or fibers, and only then does one attempt to calculate eigenstates of the entire composite. We apply this procedure to 2D periodic arrays of cylinders—both hexagonal and square. Using simple matrix perturbation techniques we obtain exact expansions for the elastic constants in powers of p, the volume fraction of the cylinders, that go up to the order p11 in the case of bulk modulus of the hexagonal array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号