首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the anhydrous 1:1 proton‐transfer compounds of the dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely isomeric 4‐(phenyldiazenyl)anilinium 2‐carboxy‐6‐nitrobenzoate, C12H12N3+·C8H4NO6, (I), and 4‐(phenyldiazenyl)anilinium 2‐carboxy‐4‐nitrobenzoate, C12H12N3+·C8H4NO6, (II), and 4‐(phenyldiazenyl)anilinium 3‐carboxy‐5‐nitrobenzoate monohydrate, C12H12N3+·C8H4NO6·H2O, (III), have been determined at 130 K. In (I) the cation has longitudinal rotational disorder. All three compounds have substructures comprising backbones formed through strong head‐to‐tail carboxyl–carboxylate hydrogen‐bond interactions [graph set C(7) in (I) and (II), and C(8) in (III)]. Two‐dimensional sheet structures are formed in all three compounds by the incorporation of the 4‐(phenyldiazenyl)anilinium cations into the substructures, including, in the cases of (I) and (II), infinite H—N—H to carboxylate O—C—O group interactions [graph set C(6)], and in the case of (III), bridging through the water molecule of solvation. The peripheral alternating aromatic ring residues of both cations and anions give only weakly π‐interactive step features which lie between the sheets.  相似文献   

2.
In the structure of the 1:1 proton‐transfer compound from the reaction of l ‐tartaric acid with the azo‐dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely 4‐(phenyldiazenyl)anilinium (2R,3R)‐3‐carboxy‐2,3‐dihydroxypropanoate, C12H12N3+·C4H5O6, the asymmetric unit contains two independent 4‐(phenyldiazenyl)anilinium cations and two hydrogen l ‐tartrate anions. The structure is unusual in that all four phenyl rings of the two cations have identical rotational disorder with equal occupancy of the conformations. The two hydrogen l ‐tartrate anions form independent but similar chains through head‐to‐tail carboxyl–carboxylate O—H...O hydrogen bonds [graph set C(7)], which are then extended into a two‐dimensional hydrogen‐bonded sheet structure through hydroxy O—H...O hydrogen‐bonded links. The anilinium groups of the 4‐(phenyldiazenyl)anilinium cations are incorporated into the sheets and also provide internal hydrogen‐bonded extensions, while their aromatic tails are layered in the structure without significant association except for weak π–π interactions [minimum ring centroid separation = 3.844 (3) Å]. The hydrogen l ‐tartrate residues of both anions exhibit the common short intramolecular hydroxy–carboxylate O—H...O hydogen bonds. This work provides a solution to the unusual disorder problem inherent in the structure of this salt, as well as giving another example of the utility of the hydrogen tartrate anion in the generation of sheet substructures in molecular assembly processes.  相似文献   

3.
The crystal structures of 2‐hydroxy‐5‐[(E)‐(4‐nitrophenyl)diazenyl]benzoic acid, C13H9N3O5, (I), ammonium 2‐hydroxy‐5‐[(E)‐phenyldiazenyl]benzoate, NH4+·C13H9N2O3, (II), and sodium 2‐hydroxy‐5‐[(E)‐(4‐nitrophenyl)diazenyl]benzoate trihydrate, Na+·C13H8N3O5·3H2O, (III), have been determined using single‐crystal X‐ray diffraction. In (I) and (III), the phenyldiazenyl and carboxylic acid/carboxylate groups are in an anti orientation with respect to each other, which is in accord with the results of density functional theory (DFT) calculations, whereas in (II), the anion adopts a syn conformation. In (I), molecules form slanted stacks along the [100] direction. In (II), anions form bilayers parallel to (010), the inner part of the bilayers being formed by the benzene rings, with the –OH and –COO substituents on the bilayer surface. The NH4+ cations in (II) are located between the bilayers and are engaged in numerous N—H...O hydrogen bonds. In (III), anions form layers parallel to (001). Both Na+ cations have a distorted octahedral environment, with four octahedra edge‐shared by bridging water O atoms, forming [Na4(H2O)12]4+ units.  相似文献   

4.
In the title compounds, 4‐aminopyridinium 4‐aminobenzoate dihydrate, C7H6NO2·C5H7N2+·2H2O, (I), and 4‐aminopyridinium nicotinate, C5H7N2+·C6H4NO2, (II), the aromatic N atoms of the 4‐aminopyridinium cations are protonated. In (I), the asymmetric unit is composed of two 4‐aminopyridinium cations, two 4‐aminobenzoate anions and four water molecules, and the compound crystallizes in a noncentrosymmetric space group. The two sets of independent molecules of (I) are related by a centre of symmetry which is not part of the space group. In (I), the protonated pyridinium ring H atoms are involved in bifurcated hydrogen bonding with carboxylate O atoms to form an R12(4) ring motif. The water molecules link the ions to form a two‐dimensional network along the (10) plane. In (II), an intramolecular bifurcated hydrogen bond generates an R12(4) ring motif and inter‐ion hydrogen bonding generates an R42(16) ring motif. The packing of adduct (II) is consolidated via N—H...O and N—H...N hydrogen bonds to form a two‐dimensional network along the (10) plane.  相似文献   

5.
The 1:1 proton‐transfer compounds of l ‐tartaric acid with 3‐aminopyridine [3‐aminopyridinium hydrogen (2R,3R)‐tartrate dihydrate, C5H7N2+·C4H5O6·2H2O, (I)], pyridine‐3‐carboxylic acid (nicotinic acid) [anhydrous 3‐carboxypyridinium hydrogen (2R,3R)‐tartrate, C6H6NO2+·C4H5O6, (II)] and pyridine‐2‐carboxylic acid [2‐carboxypyridinium hydrogen (2R,3R)‐tartrate monohydrate, C6H6NO2+·C4H5O6·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium–carboxyl N+—H...O hydrogen‐bonding interaction, four‐centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N—H...O association in (III) is with a water O‐atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head‐to‐tail C(7) hydrogen‐bonded chain substructures commonly associated with 1:1 proton‐transfer hydrogen tartrate salts. These chains are extended into two‐dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three‐dimensional hydrogen‐bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O‐atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl–carboxyl O—H...O hydrogen bonds [O...O = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter‐sheet association. This series of heteroaromatic Lewis base–hydrogen l ‐tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two‐dimensional hydrogen‐bonded hydrogen tartrate or hydrogen tartrate–water sheet substructures which are expanded into three‐dimensional frameworks via peripheral cation bifunctional substituent‐group crosslinking interactions.  相似文献   

6.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

7.
Reaction between cysteamine (systematic name: 2‐aminoethanethiol, C2H7NS) and L‐(+)‐tartaric acid [systematic name: (2R,3R)‐2,3‐dihydroxybutanedioic acid, C4H6O6] results in a mixture of cysteamine tartrate(1−) monohydrate, C2H8NS+·C4H5O6·H2O, (I), and cystamine bis[tartrate(1−)] dihydrate, C4H14N2S22+·2C4H5O6·2H2O, (III). Cystamine [systematic name: 2,2′‐dithiobis(ethylamine), C4H12N2S2], reacts with L‐(+)‐tartaric acid to produce a mixture of cystamine tartrate(2−), C4H14N2S22+·C4H4O62−, (II), and (III). In each crystal structure, the anions are linked by O—H...O hydrogen bonds that run parallel to the a axis. In addition, hydrogen bonding involving protonated amino groups in all three salts, and water molecules in (I) and (III), leads to extensive three‐dimensional hydrogen‐bonding networks. All three salts crystallize in the orthorhombic space group P212121.  相似文献   

8.
The title salt, C6H12NO2+·C6H7O4 or ISO+·CBDC, is an ionic ensemble assisted by hydrogen bonds. The amino acid moiety (ISO or piperidine‐4‐carboxylic acid) has a protonated ring N atom (ISO+ or 4‐carboxypiperidinium), while the semi‐protonated acid (CBDC or 1‐carboxycyclobutane‐1‐carboxylate) has the negative charge residing on one carboxylate group, leaving the other as a neutral –COOH group. The –+NH2– state of protonation allows the formation of a two‐dimensional crystal packing consisting of zigzag layers stacked along a separated by van der Waals distances. The layers extend in the bc plane connected by a complex network of N—H...O and O—H...O hydrogen bonds. Wave‐like ribbons, constructed from ISO+ and CBDC units and described by the graph‐set symbols C33(10) and R33(14), run alternately in opposite directions along c. Intercalated between the ribbons are ISO+ cations linked by hydrogen bonds, forming rings described by the graph‐set symbols R66(30) and R42(18). A detailed analysis of the structures of the individual components and the intricate hydrogen‐bond network of the crystal structure is given.  相似文献   

9.
In the crystal structures of 2‐amino‐4,6‐dimethoxypyrimidinium 2,4,6‐trinitrophenolate (picrate), C6H10N3O2+·C6H2N3O7, (I), and 2,4‐diamino‐5‐(4‐chlorophenyl)‐6‐ethylpyrimidin‐1‐ium (pyrimethaminium or PMN) picrate dimethyl sulfoxide solvate, C12H14ClN4+·C6H2N3O7·C2H6OS, (II), the 2‐amino‐4,6‐dimethoxypyrimidine and PMN cations are protonated at one of the pyrimidine N atoms. The picrate anion interacts with the protonated cations through bifurcated N—H...O hydrogen bonds, forming R21(6) and R12(6) ring motifs. In (I), Z′ = 2. In (II), two inversion‐related PMN cations are connected through a pair of N—H...N hydrogen bonds involving the 4‐amino group and the uncharged N atom of the pyrimidine ring, forming a cyclic hydrogen‐bonded R22(8) motif. In addition to the pairing, the O atom of the dimethyl sulfoxide solvent molecule bridges the 2‐amino and 4‐amino groups on both sides of the paired bases, resulting in a self‐complementary …DADA… array of quadruple hydrogen‐bonding patterns.  相似文献   

10.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

11.
The crystal structures of the proton‐transfer compounds of ferron (8‐hydroxy‐7‐iodoquinoline‐5‐sulfonic acid) with 4‐chloroaniline and 4‐bromoaniline, namely 4‐chloroanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7ClN+·C9H5INO4S·H2O, and 4‐bromoanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7BrN+·C9H5INO4S·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen‐bonded cations, anions and water molecules which are extended into a three‐dimensional framework structure through centrosymmetric R22(10) O—H...N hydrogen‐bonded ferron dimer interactions.  相似文献   

12.
Crystals of 5‐chloropyridin‐2‐amine–(2E)‐but‐2‐enedioate (2/1), 2C5H5ClN2·C4H4O4, (I), and 2‐aminopyridinium dl ‐3‐carboxy‐2‐hydroxypropanoate, C5H7N2+·C4H5O5, (II), are built from the neutral 5‐chloropyridin‐2‐amine molecule and fumaric acid in the case of (I) and from ring‐N‐protonated 2‐aminopyridinium cations and malate anions in (II). The fumaric acid molecule lies on an inversion centre. In (I), the neutral 5‐chloropyridin‐2‐amine and fumaric acid molecules interact via hydrogen bonds, forming two‐dimensional layers parallel to the (100) plane, whereas in (II), oppositely charged units interact via ionic and hydrogen bonds, forming a three‐dimensional network.  相似文献   

13.
The structures of diastereomeric pairs consisting of (S)‐ and (R)‐2‐methylpiperazine with (2S,3S)‐tartaric acid are both 1:1 salts, namely (S)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (I), and (R)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (II), which reveal the formation of well defined ammonium carboxylate salts linked via strong intermolecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water molecules at regular intervals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen‐bond contribution is stronger in the more soluble salt (II).  相似文献   

14.
The structure of the title compound, C14H19N2+·C9H3Cl6O4?·H2O, consists of singly ionized 1,4,5,6,7,7‐hexachlorobicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylic acid anions and protonated 1,8‐bis(dimethylamino)naphthalene cations. In the (8‐dimethylamino‐1‐napthyl)dimethylammonium cat­ion, a strong disordered intramolecular hydrogen bond is formed with N?N = 2.589 (3) Å. The geometry and occupancy obtained in the final restrained refinement suggest that the disordered hydrogen bond may be asymmetric. Water mol­ecules link the anion dimers into infinite chains via hydrogen bonding.  相似文献   

15.
The structures of two brucinium (2,3‐dimeth­oxy‐10‐oxostrychnidinium) salts of the α‐hydr­oxy acids l ‐malic acid and l ‐tartaric acid, namely brucinium hydrogen (S)‐malate penta­hydrate, C23H27N2O4+·C4H5O5·5H2O, (I), and anhydrous brucinium hydrogen (2R,3R)‐tartrate, C23H27N2O4+·C4H5O6,(II), have been determined at 130 K. Compound (I) has two brucinium cations, two hydrogen malate anions and ten water mol­ecules of solvation in the asymmetric unit, and forms an extensively hydrogen‐bonded three‐dimensional framework structure. In compound (II), the brucinium cations form the common undulating brucine sheet substructures, which accommodate parallel chains of head‐to‐tail hydrogen‐bonded tartrate anion species in the inter­stitial cavities.  相似文献   

16.
The structures of the 1:1 proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with 4‐nitrophthalic acid [4‐carbamoylpiperidinium 2‐carboxy‐4‐nitrobenzoate, C6H13N2O8+·C8H4O6, (I)], 4,5‐dichlorophthalic acid [4‐carbamoylpiperidinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H13N2O8+·C8H3Cl2O4, (II)] and 5‐nitroisophthalic acid [4‐carbamoylpiperidinium 3‐carboxy‐5‐nitrobenzoate, C6H13N2O8+·C8H4O6, (III)], as well as the 2:1 compound with terephthalic acid [bis(4‐carbamoylpiperidinium) benzene‐1,2‐dicarboxylate dihydrate, 2C6H13N2O8+·C8H4O42−·2H2O, (IV)], have been determined at 200 K. All salts form hydrogen‐bonded structures, viz. one‐dimensional in (II) and three‐dimensional in (I), (III) and (IV). In (I) and (III), the centrosymmetric R22(8) cyclic amide–amide association is found, while in (IV) several different types of water‐bridged cyclic associations are present [graph sets R42(8), R43(10), R44(12), R33(18) and R64(22)]. The one‐dimensional structure of (I) features the common `planar' hydrogen 4,5‐dichlorophthalate anion, together with enlarged cyclic R33(13) and R43(17) associations. In the structures of (I) and (III), the presence of head‐to‐tail hydrogen phthalate chain substructures is found. In (IV), head‐to‐tail primary cation–anion associations are extended longitudinally into chains through the water‐bridged cation associations, and laterally by piperidinium–carboxylate N—H...O and water–carboxylate O—H...O hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. An additional example of cation–anion association with this cation is also shown in the asymmetric three‐centre piperidinium–carboxylate N—H...O,O′ interaction in the first‐reported structure of a 2:1 isonipecotamide–carboxylate salt.  相似文献   

17.
In 9H‐adenine‐1,7‐diium hemioxalate chloride, C5H7N52+·0.5C2O42−·Cl, (I), adenine is doubly protonated, while in 7H‐adenin‐1‐ium semioxalate hemi(oxalic acid) monohydrate, C5H6N5+·C2HO4·0.5C2H2O4·H2O, (II), adenine and one oxalate anion are both monoprotonated. In (I), the adeninium cation forms R22(8) and R12(5) hydrogen‐bonding motifs with the centrosymmetric oxalate anion, while in (II), the cation forms R21(6) and R12(5) motifs with the centrosymmetric oxalic acid molecule and R12(5)and R22(9) motifs with the monoprotonated oxalate anion. Linear hydrogen‐bonded trimers are observed in (I) and (II). In both structures, the hydrogen bonds lead to the formation of two‐dimensional supramolecular hydrogen‐bonded sheets in the crystal packing. The significance of this study lies in the analysis of the interactions occurring via hydrogen bonds and the diversity seen in the supramolecular hydrogen‐bonded networks as a result of such interactions.  相似文献   

18.
The crystal structures of a pair of diastereomeric 1:2 salts of (R)‐ and (S)‐2‐methylpiperazine with (2S,3S)‐tartaric acid, namely (R)‐2‐methylpiperazinediium bis[hydrogen (2S,3S)‐tartrate] monohydrate, (I), and (S)‐2‐methylpiperazinediium bis[hydrogen (2S,3S)‐tartrate] monohydrate, (II), both C5H14N22+·2C4H5O6·H2O, each reveal the formation of well‐defined head‐to‐tail‐connected hydrogen tartrate chains; these chains are linked into a two‐dimensional sheet via intermolecular hydrogen bonds involving hydroxy groups and water molecules, resulting in a layer structure. The (R)‐2‐methylpiperazinediium ions lie between the hydrogen tartrate layers in the most stable equatorial conformation in (I), whereas in (II), these ions are in an unstable axial position inside the more interconnected layers and form a larger number of intermolecular hydrogen bonds than are observed in (I).  相似文献   

19.
In the title compounds, C7H8NO2+·Br, (I), and C7H8NO2+·I, (II), the asymmetric unit contains a discrete 3‐carboxyanilinium cation, with a protonated amine group, and a halide anion. The compounds are not isostructural, and the crystal structures of (I) and (II) are characterized by different two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected into ladder‐like ribbons via N—H...Br hydrogen bonds, while classic cyclic O—H...O hydrogen bonds between adjacent carboxylic acid functions link adjacent ribbons to give three characteristic graph‐set motifs, viz. C21(4), R42(8) and R22(8). The ions in (II) are connected via N—H...I, N—H...O and O—H...I hydrogen bonds, also with three characteristic graph‐set motifs, viz. C(7), C21(4) and R42(18), but an O—H...O interaction is not present.  相似文献   

20.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号