首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The Fe3O4 magnetic particles were modified with 1,10‐phenanthroline‐5,6‐diol (Phen) and the related Mn complex (Fe3O4@Phen@Mn) synthesized as a heterogeneous catalyst to be used for the one‐pot three‐component synthesis of various tetrazoles. The catalysts were characterized by several methods, such as the elemental analysis, FT‐IR, X‐ray powder diffraction, dispersive X‐ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, thermogravimetric‐differential thermal analysis, vibrating sample magnetometer and X‐ray photoelectron spectroscopy. In addition, the antioxidant and antibacterial activities of the catalyst and its Phen ligand were in vitro screened with 2,2‐diphenyl‐1‐picrylhydrazyl by free radical scavenging methods. Results showed that the synthesized compounds possess strong antioxidant activity (IC50; 0.172  ±  0.005 mg ml?1) as well as a good antibacterial potential in comparison to standards.  相似文献   

2.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

3.
In this research, a solvent‐free four‐component one‐pot reaction of phenyl isothiocyanate, phenylacetylene, various kinds of aldehydes, and amines was interpreted to obtain the desired five‐membered heterocycles named thiazolidin‐2‐imines. The promotor of this transformation is a novel magnetite‐based multilayered inorganic–bioorganic nanohybrid prepared via embedding glutamic acid on the magnetized silica followed by anchoring Cu (II) [nano Fe3O4‐SiO2@Glu‐Cu (II)]. The newly synthesized nanostructure is characterized through Fourier‐transform infrared (FT‐IR), field‐emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDAX), transmission electron microscopy (TEM), X‐ray fluorescence (XRF), thermogravimetric analysis or derivative thermogravimetric (TGA/DTG), vibrating sample magnetometer (VSM), X‐ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) techniques. This protocol is a straightforward one‐step procedure to obtain thiazolidin‐2‐imines without requirement to propargylamines or imines as substrates. In addition, easy work‐up procedure, high yields of products, absence of organic solvents in the reaction media, recovery and reusability of nano Fe3O4‐SiO2@Glu‐Cu ( II) to promote the reaction at least for three runs without activity lost, simple separation of the catalyst from reaction mixture via an external magnet, and regioselectivity of the method are some highlighted aspects of the approach.  相似文献   

4.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

5.
The preparation of Ni@Pd core–shell nanoparticles immobilized on yolk–shell Fe3O4@polyaniline composites is reported. Fe3O4 nanoclusters were first synthesized through the solvothermal method and then the SiO2 shell was coated on the Fe3O4 surface via a sol–gel process. To prepare Fe3O4@SiO2@polyaniline composites, polyvinylpyrrolidone was first grafted on to the surface of Fe3O4@SiO2 composites and subsequently polymerization of aniline was carried out via an ultrasound‐assisted in situ surface polymerization method. Selective etching of the middle SiO2 layer was then accomplished to obtain the yolk–shell Fe3O4@polyaniline composites. The approach uses polyaniline (PANI) conductive polymer as a template for the synthesis of Ni@Pd core–shell nanoparticles. The catalytic activity of the synthesized yolk–shell Fe3O4@PANI/Ni@Pd composite was investigated in the reduction of o‐nitroaniline to benzenediamine by NaBH4, which exhibited conversion of 99% in 3 min with a very low content of the catalyst. Transmission electron microscopy, X‐ray photoelectron spectroscopy, TGA, X‐ray diffraction, UV–visible, scanning electron microscopy, X‐ray energy dispersion spectroscopy and FT‐IR were employed to characterize the synthesized nanocatalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Urea was successfully immobilized on the surface of chloropropyl‐modified Fe3O4@SiO2 core–shell magnetic nanoparticles, then supported by MgBr2 and acts as a unique catalyst for oxidation of benzylic alcohols to aldehydes and ketones, and ortho‐formylation of phenols to salicylaldehydes. The prepared catalyst was characterized by FT‐IR, transmission electron microscopy, scanning electron microscopy, X‐ray powder diffraction, dispersive X‐ray spectroscopy, CHN and TGA. It was found that Fe3O4@SiO2 ~ urea/MgBr2 showed higher catalytic activity than homogenous MgBr2, and could be reused several times without significant loss of activity.  相似文献   

7.
《中国化学会会志》2018,65(7):875-882
Hollow Fe3O4@TiO2‐NH2/Pd as a light‐weight, magnetically heterogeneous catalyst was successfully prepared, and characterized by using different techniques including X‐ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), vibrating sample magnetometer (VSM) measurements, and thermogravimetric analysis (TGA). Then this heterogeneous catalyst was tested in the Suzuki cross‐coupling reaction, and the results confirmed the success of this method. The catalyst could be separated easily using an external magnet and reused at least in five runs successfully without any appreciable loss in its catalytic activity.  相似文献   

8.
A new magnetically separable nickel catalyst (Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2) was readily prepared and structurally characterized by Fourier transform infrared spectroscopy (FT‐IR), Scanning electron microscopy (SEM), Energy‐dispersive X‐ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD) and Atomic absorption spectroscopy (AAS). The Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2 exhibited efficient catalytic activity in the synthesis of 2,3‐dihydroquinazoline‐4(1H)‐ones and polyhydroquinolines. Catalysis research under water and solvent‐free conditions makes also this synthetic protocol ideal and fascinating from the environmental point of view. The catalyst can be magnetically recovered after the reaction and can be reused for many times without appreciable decrease in activity.  相似文献   

9.
In the current study, a novel and reusable biological urea based nano magnetic catalyst namely Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was designed and synthesized. The structure of the titled catalyst was fully characterized using several skills including Fourier transform infrared (FT‐IR) spectroscopy, energy dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo gravimetric analysis/differential thermal analysis (TG/DTG) and vibrating sample magnetometer (VSM). Then, the catalytic performance of Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was successfully inspected towards the multicomponent synthesis of 2‐amino‐3‐cyano pyridine derivatives through a vinylogous anomeric based oxidation pathway.  相似文献   

10.
《中国化学会会志》2018,65(7):850-855
A green synthesis of benzimidazole derivatives using recyclable magnetic 4,5‐imidazoledicarboxylic is described. The magnetic 4,5‐imidazoledicarboxylic (Fe3O4@ImDCA) nanocatalyst was characterized completely by infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD), and benzimidazoles were characterized by their melting points, FT‐IR, and 1H NMR. The current approach provides a number of advantages in terms of high yields, low reaction times, the use of green media, and easy work‐up.  相似文献   

11.
Nanocellulose (NC) materials have some unique properties, which make them attractive as organic or inorganic supports for catalytic applications. Nanocatalysts with diameters of less than 100 nm are difficult to separate from the reaction mixture, therefore, magnetic nanoparticles (MNPs) were used as catalysts to overcome this problem. Fe3O4@NCs/BF0.2 as a green, bio‐based, eco‐friendly, and recyclable catalyst was synthesized and characterized using fourier‐transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), X‐ray diffraction (XRD), X‐ray fluorescence (XRF), Brunauer–Emmett–Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. Fe3O4@NCs/BF0.2 was employed for the synthesis of 2,3‐dihydro‐1H‐perimidine derivatives via a reaction of 1,8‐diaminonaphthalene with various aldehydes at room temperature under solvent‐free conditions. The present procedure offers several advantages including a short reaction time, excellent yields, easy separation of catalyst, and environmental friendliness.  相似文献   

12.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   

13.
Copper and cobalt substituted spinel ferrites Cu1‐xCoxFe2O4 (0≤X≤1) have been synthesized by using hydrothermal method. The resultant spinel ferrites were systematically characterized by different techniques such as X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FT‐IR). It was indicated that all the resultant spinel ferrites obtained by the hydrothermal method had the single‐phase crystalline. The resultant spinel ferrites were employed in the synthesis of 14‐aryl‐14‐H‐dibenzo[a,j]xanthene derivatives. It was found that the nanocatalyst Cu0.5Co0.5Fe2O4 displays the best performance in the synthesis of 14‐aryl‐14H‐dibenzo[a,j]xanthenes. The catalyst was reused several times without significant loss of its activity for the preparation of desired product. In addition high yields of the products, solvent‐free conditions and reusability of the catalyst are other worthwhile advantages of the present study.  相似文献   

14.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Fe3O4@MCM‐41@Zr‐MNPs modified with piperazine is easily prepared and characterized using Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), N2 adsorption–desorption, Transmission electron microscopy (TEM), Energy‐dispersive X‐ray (EDX), Vibrating sample magnetometry (VSM) and Thermogravimetric analysis (TGA) techniques. The characterization results showed that Zr highly dispersed in the tetrahedral environment of silica framework and piperazine is successfully attached to the surface of the nanocatalyst in connection with zirconium. The prepared nanosized reagent (10–30 nm), shows excellent catalytic activity in the synthesis of tetrahydro‐4H‐chromene and pyrano[2,3‐d]pyrimidinone derivatives. All reactions are performed under mild and completely heterogeneous reactions conditions in high yields during short reaction times. On the other hand and due to its superparamagnetic nature the catalyst can be easily separated by the application of an external magnetic field and reused for several times.  相似文献   

16.
A protocol is introduced for the preparation of a new cage‐like Pd–Schiff base organometallic complex supported on Fe3O4 nanoparticles (Fe3O4@Schiff‐base‐Pd). The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller measurements, scanning electron microscopy (SEM), transmission electron microscopy, X‐ray mapping, thermogravimetric analysis, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. In the second stage, the catalytic activity of this catalyst was studied in the Suzuki and Heck cross‐coupling reactions in water as a green solvent. In this sense, simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. Finally, the nanocatalyst was easily recovered, using an external magnet, and reused several times without significant loss of its catalytic efficiency. In addition, the stability of the catalyst after recycling was confirmed using SEM, XRD and FT‐IR techniques.  相似文献   

17.
Fe3O4 magnetic nanoparticles (MNPs) were functionalized by aminopropylsilane and reacted with aromatic aldehyde, and Fe3O4‐Si‐[CH2]3‐N=CH‐Aryl and Fe3O4‐Si‐(CH2)3‐NH‐CH2‐Aryl MNPs were prepared as novel magnetic nanocatalysts. Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM) were used to identify the MNPs. The catalytic activity of the MNPs was evaluated in the one‐pot synthesis of some novel poly‐substituted pyridine derivatives.  相似文献   

18.
In the present study, Fe3O4 nanoparticles were prepared via simple and versatile procedure. Then, a novel and green catalyst was synthesized by the immobilization of Ni on Fe3O4 nanoparticles coated with adenine. The activity of this nanostructure compound was examined for the oxidation of sulfides, oxidative coupling of thiols and synthesis of polyhydroquinolines. The prepared catalyst was characterized by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP‐OES), X‐ray Diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) measurements. This organometallic catalyst was recovered by the assistance of an external magnetic field from the reaction mixture and reused for seven continuous cycles without noticeable change in its catalytic activity.  相似文献   

19.
Eggshell is a hazardous waste by European Union regulations, so that discarded thousands of tons per year. To convert waste (eggshell) to wealth (catalyst), nano‐magnetic eggshell was prepared based on the nano‐Fe3O4, and then the eggshell was converted to Ca(HSO4)2 with organic acid, namely, chlorosulfonic acid. Based on the back titration, 5.18 mmol SO4H group was loaded per gram of the nano‐structure. Using this method eggshell was converted to cheap, green and environment‐friendly solid acid catalyst. The prepared catalyst (nano‐ Fe3O4@Ca(HSO4)2) was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermal gravimetric analysis (TGA). The activity of eggshell waste‐derived catalysts was successfully evaluated in the synthesis of value‐added products, namely indazolo[1,2‐b]‐phthalazinetrione derivatives as a benchmark multicomponent reaction. In addition, design of experiments shows that increase in amount of catalyst (and temperature), boost the reaction yield, especially with steeper slope at higher temperature.  相似文献   

20.
1‐Methyl imidazole‐based ionic liquid‐stabilized silica‐coated Fe3O4 magnetic nanoparticles [Fe3O4@SiO2@(CH2)3‐1‐methyl imidazole]HSO4 as a solid acid magnetic nanocatalyst was explored in the synthesis of pyrano[2,3‐d]pyrimidine derivatives. Pyrano[2,3‐d]pyrimidine derivatives were synthesized by a highly efficient three‐component reaction of various benzaldehydes, malononitrile, and barbituric acid. The catalyst was characterized by using various analysis techniques such as Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry‐thermogravimetry analysis (DSC‐TGA), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号