首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery.  相似文献   

2.
Different profiles were obtained by capillary zone electrophoresis (CZE) of human erythropoietin (EPO) of recombinant and urinary origin. To unambiguously detect doping by EPO, direct methods able to determine the presence of the drug itself in a physiological fluid are required. Since the host cell line used for EPO production influences its glycosylation, the carbohydrate distribution of natural human EPO may be different from that of recombinant EPO. The different content in sialic acid groups between recombinant and endogenous EPO provide a basis for their distinction by CZE.  相似文献   

3.
4.
We present a versatile computer model of diverse dynamic combinatorial libraries, and examine how molecular recognition between library members and a template can be used to amplify the best binders. The correlation between host-guest binding and amplification was examined for a set of 50 libraries with >300 components each over a wide range of template and building block concentrations. Depending on these concentrations correlations vary from poor (when using a large excess of template) to good (for very dilute libraries and/or substoichiometric template concentrations), highlighting the need to choose the experimental conditions for dynamic combinatorial libraries thoughtfully.  相似文献   

5.
Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA‐encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal‐to‐noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA‐encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high‐affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA‐templated chemical reactions.  相似文献   

6.
DNA-encoded chemical libraries are typically screened against purified protein targets. Recently, cell-based selections with encoded chemical libraries have been described, commonly revealing suboptimal performance due to insufficient recovery of binding molecules. We used carbonic anhydrase IX (CAIX)-expressing tumor cells as a model system to optimize selection procedures with code-specific quantitative polymerase chain reaction (qPCR) as selection readout. Salt concentration and performing PCR on cell suspension had the biggest impact on selection performance, leading to 15-fold enrichment factors for high-affinity monovalent CAIX binders (acetazolamide; KD=8.7 nM). Surprisingly, the homobivalent display of acetazolamide at the extremities of both complementary DNA strands led to a substantial improvement of both ligand recovery and enrichment factors (above 100-fold). The optimized procedures were used for selections with a DNA-encoded chemical library comprising 1 million members against tumor cell lines expressing CAIX, leading to a preferential recovery of known and new ligands against this validated tumor-associated target. This work may facilitate future affinity selections on cells against target proteins which might be difficult to express otherwise.  相似文献   

7.
The two subunits of core binding factor (Runx1 and CBFbeta) play critical roles in hematopoiesis and are frequent targets of chromosomal translocations found in leukemia. The binding of the CBFbeta-smooth muscle myosin heavy chain (SMMHC) fusion protein to Runx1 is essential for leukemogenesis, making this a viable target for treatment. We have developed inhibitors with low micromolar affinity which effectively block binding of Runx1 to CBFbeta. NMR-based docking shows that these compounds bind to CBFbeta at a site displaced from the binding interface for Runx1, that is, these compounds function as allosteric inhibitors of this protein-protein interaction, a potentially generalizable approach. Treatment of the human leukemia cell line ME-1 with these compounds shows decreased proliferation, indicating these are good candidates for further development.  相似文献   

8.
M.A. Gondal  T. Hussain  M.A. Baig 《Talanta》2007,72(2):642-649
Study of various binding materials like potassium bromide, poly(vinyl alcohol), starch, silver and aluminum has been carried out using laser-induced breakdown spectroscopy (LIBS). The role of matrix effects using these five binders on LIBS signal intensity was investigated for better performance of LIBS technique as a quantitative analytical tool. For comparative study of different binders, the signal intensity of different Mg lines at 518.3, 517.2, 383.8 and 279.5 nm wavelengths were recorded for pellets prepared with known concentrations of Mg in these binders. The influence of laser energy on ablated mass under different binding materials and its correlation with LIBS signal intensity has been explored. Optical scanning microscopy images of the ablated crater were studied to understand the laser ablation process. The study revealed that the binding material plays an important role in the generation of LIBS signal. The relative signal intensity measured for a standard Mg line (at 518.3 nm) were 735, 538, 387, 227 and 130 for potassium bromide, starch, poly(vinyl alcohol), silver and aluminum as binders, respectively. This indicates clearly that potassium bromide is better as a binder for LIBS studies of powder samples.  相似文献   

9.
With the human genome project approaching completion, there is a growing interest in functional analysis of gene products. The characterization of large numbers of proteins, their expression patterns and in vivo localisations, demands the use of automated technology that maintains a logistic link to the encoding genes. As a complementary approach, phage display is used for recombinant protein expression and the selection of interacting (binding) molecules. Cloning of libraries in filamentous bacteriophage or phage mid vectors provides a physical link between the expressed protein and its encoding DNA sequence. High-throughput technology for automated library handling and phage display selection has been developed using picking-spotting robots and a module for pin-based magnetic particle handling. This system enables simultaneous interaction screening of libraries and the selection of binders to different target molecules at high throughput. Target molecules are either displayed on high-density filter membranes (protein filters) or tag-bound to magnetic particles and can be handled as native ligands. Binding activity is confirmed by magnetic particle ELISA in the microtitre format. The whole procedure from immobilisation of target molecules to confirmed clones of binders is automatable. Using this technology, we have selected human scFv antibody fragments against expression products of human cDNA libraries.  相似文献   

10.
We have developed a new color-encoding method that facilitates high-throughput screening of one-bead one-compound (OBOC) combinatorial libraries. Polymer beads displaying chemical compounds or families of compounds are stained with oil-based organic dyes that are used as coding tags. The color dyes do not affect cell binding to the compounds displayed on the surface of the beads. We have applied such rainbow beads in a multiplex manner to discover and profile ligands against cell surface receptors. In the first application, a series of OBOC libraries with different scaffolds or motifs are each color-coded; small samples of each library are then combined and screened concurrently against live cells for cell attachment. Preferred libraries can be rapidly identified and selected for subsequent large-scale screenings for cell surface binding ligands. In a second application, beads with a series of peptide analogues (e.g., alanine scan) are color-coded, combined, and tested for binding against a specific cell line in a single-tissue culture well; the critical residues required for binding can be easily determined. In a third application, ligands reacting against a series of integrins are color-coded and used as a readily applied research tool to determine the integrin profile of any cell type. One major advantage of this straightforward and yet powerful method is that only an ordinary inverted microscope is needed for the analysis, instead of sophisticated (and expensive) fluorescent microscopes or flow cytometers.  相似文献   

11.
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.  相似文献   

12.
Methods for the rapid and inexpensive discovery of hit compounds are essential for pharmaceutical research and DNA‐encoded chemical libraries represent promising tools for this purpose. We here report on the design and synthesis of DAL‐100K, a DNA‐encoded chemical library containing 103 200 structurally compact compounds. Affinity screening experiments and DNA‐sequencing analysis provided ligands with nanomolar affinities to several proteins, including prostate‐specific membrane antigen and tankyrase 1. Correlations of sequence counts with binding affinities and potencies of enzyme inhibition were observed and enabled the identification of structural features critical for activity. These results indicate that libraries of this type represent a useful source of small‐molecule binders for target proteins of pharmaceutical interest and information on structural features important for binding.  相似文献   

13.
Rational design in combination with a screening process was used to develop affinity polymers for a specific binding site on the surface of immunoglobulin G (IgG) proteins. The concept starts with the identification of critical amino acid residues on the protein interface and their topological arrangement. Appropriate binding monomers were subsequently synthesized. Together with a sugar monomer (2–5 equiv) for water solubility and a dansyl monomer (0.5 equiv) as a fluorescent label, they were subjected in aqueous solution to linear radical copolymerization in various compositions (e.g., azobisisobutyronitrile (AIBN), homogeneous water/DMF mixtures). After ultrafiltration and lyophilization, colorless dry water‐soluble powders were obtained. NMR spectroscopic and gel permeation chromatography (GPC) characterization indicated molecular weights between 30 and 500 kD and confirmed retention of monomer composition as well as the absence of monomers. In a competitive enzyme‐linked immunosorbent assay (ELISA) screen of the polymer libraries (20–50 members), few copolymers qualified as strong and selective binders for the protein A binding site on the Fc fragment of the antibody. Their monomer composition precisely reflected the critical amino acids found at the interface. The simple combination of a charged and a nonpolar binding monomer sufficed for selective submicromolar IgG recognition by the synthetic polymer. Affinities were confirmed by fluorescence titrations; they increased with decreasing salt load but remained largely unaltered at lowered pH. Other proteins, including those of similar size and isoelectric point (pI), were bound 10–1000 times less tightly. This example indicates that interaction domains in other proteins may also be targeted by synthetic polymers if their comonomer composition reflects the nature and arrangement of amino acid residues on the protein surface.  相似文献   

14.
In-solution affinity selection (AS) of large synthetic peptide libraries affords identification of binders to protein targets through access to an expanded chemical space. Standard affinity selection methods, however, can be time-consuming, low-throughput, or provide hits that display low selectivity to the target. Here we report an automated bio-layer interferometry (BLI)-assisted affinity selection platform. When coupled with tandem mass spectrometry (MS), this method enables both rapid de novo discovery and affinity maturation of known peptide binders with high selectivity. The BLI-assisted AS-MS technology also features real-time monitoring of the peptide binding during the library selection process, a feature unattainable by current selection approaches. We show the utility of the BLI AS-MS platform toward rapid identification of novel nanomolar (dissociation constant, KD < 50 nM) non-canonical binders to the leukemia-associated oncogenic protein menin. To our knowledge, this is the first application of BLI to the affinity selection of synthetic peptide libraries. We believe our approach can significantly accelerate the use of synthetic peptidomimetic libraries in drug discovery.

This work reports an automated affinity selection-mass spectrometry (AS-MS) approach amenable to both de novo peptide binder discovery and affinity maturation of known binders in a high-throughput and selective manner.  相似文献   

15.
The topography of antibody binding sites has been classified into five types that evoke familiar geomorphic features of the Earth. The 229 antibody crystal structures from the Protein Data Bank were analyzed and classified into these classes. Relationships to previous topography classifications by Rees et al., who defined three classes, and Thornton et al., who defined four classes, are identified. An algorithm was developed to identify the antibody binding site class automatically based on the definition and the shape of the binding site. A three-dimensional convex hull was formed around the complementarity determining regions (CDRs) of the antibody. The convex hull was then "trimmed" to fit the binding site by using distance criteria and morphological techniques. Once the program identified the binding site shape, a statistical and distance based analysis was performed to classify automatically the antibody into one of the five geomorphic classes. The five antibody topography classes are as follows: cave (mostly hapten binders), crater (mostly protein and peptide/carbohydrate/nucleic acid binders), canyon, valley, and plain (mostly protein binders). Comparisons of the binding sites of empty and of complexed antibody binding sites gave an indication of how the shape of the binding site is influenced by binding of the antigen.  相似文献   

16.
Two different sialic acid containing glycopeptide (sialopeptide) libraries were synthesized using the portion mixing method and ladder synthesis. The libraries were attached via an IMP spacer and a photolabile linker to PEGA(1900) resin in order to facilitate rapid and unambiguous structural analysis of hits by MALDI-TOFMS. One library contained a lactamized sialic acid moiety at the N terminus of a pentapeptide, while a second library displayed a sialic acid residue at the center of a heptapeptide. The sialopeptide libraries were screened against the recombinant binding domain (SnD1) of a sialic acid binding Ig-like protein, sialoadhesin (Siglec-1). No ligands were identified from the lactamized sialic acid library, underscoring the importance of the carboxylic acid moiety for binding. Screening of the second gave few distinct hits (approximately 0.03% of library) with a high consensus. The high-affinity ligands contained, in most cases, a WG motif following the sialylated Thr. The strength of binding of selected ligands was determined by surface plasmon resonance. The best sialopeptide ligand, WLLT(Sa)WGT, exhibited micromolar affinity of SnD1; >10 times the affinity of SnD1 to 3'-sialyl lactose.  相似文献   

17.
18.
Phenylbutyrate (PB), a small aromatic fatty acid, has been known as an interesting compound with the ability of anti-proliferation and cell growth inhibition in cancer cells. In the present study, a series of PB derivatives were synthesized by Passerini multicomponent reaction and their cytotoxic activities against various human cancer cell lines including A549 (non-small cell lung cancer), MDA-MB-231 (breast cancer), and SW1116 (colon cancer) were evaluated. The results revealed that B9, displayed significantly higher in vitro cytotoxicity with IC50 of 6.65, 8.44 and 24.71 μM, against A549, MDA-MB-231 and, SW1116, respectively, in comparison to PB. The effects of these compounds on the proliferation of MCF-10A as non-tumoral breast cell line, showed good selectivity of the compounds between tumorigenic and non-tumorigenic cell lines. Moreover, B9 has indicated apoptosis-inducing activities to MDA-MB-231 cancer cell line in a dose-dependent manner. The molecular docking studies of the synthesized compounds on pyruvate dehydrogenase kinase 2 (PDK2; PDB ID: 2BU8) and histone deacetylase complex (HDAC; PDB ID: 1C3R), as the main targets of PB were applied to predict the binding sites and binding orientation of the compounds to these targets.  相似文献   

19.
C-type lectin receptor (CLR) carbohydrate binding proteins found on immune cells with important functions in pathogen recognition as well as self and non-self-differentiation are increasingly moving into the focus of drug developers as targets for the immune therapy of cancer autoimmune diseases and inflammation and to improve the efficacy of vaccines. The development of molecules with increased affinity and selectivity over the natural glycan binders has largely focused on the synthesis of mono and disaccharide mimetics but glycan array binding experiments have shown increased binding selectivity and affinity for selected larger oligosaccharides that are able to engage in additional favorable interactions beyond the primary binding site. Here, a platform for the rapid preparation and screening of N-glycan mimetics on microarrays is presented that turns a panel of complex glycan core structures into structurally diverse glycomimetics by a combination of enzymatic glycosylation with a nonnatural donor and subsequent cycloaddition with a collection of alkynes. All surface-based reactions were monitored by MALDI-TOF MS to assess conversion and purity of spot compositions. Screening the collection of 374 N-glycomimetics against the plant lectin WFA and the 2 human immune lectins MGL ECD and Langerin ECD produced a number of high affinity binders as lead structures for more selective lectin targeting probes.  相似文献   

20.
Using simple computer simulations of model dynamic combinatorial libraries, we show that the best binders can be amplified to useful concentrations in libraries containing 10-10(6) compounds. [structure: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号