首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

2.
Molecular composites, in which a small concentration of ionically modified poly(p‐phenylene terephthalamide) (PPTA) is dispersed in a poly(ethylene oxide) matrix, have been prepared. With the content of PPTA anion increasing to about 5 wt %, the glass‐transition temperature rises and the melting temperature decreases. From the equilibrium‐melting‐temperature depression data that were obtained from Hoffman–Weeks plots, the Flory–Huggins interaction parameter was determined to be negative (−1.10). These indications of enhanced miscibility between the components are attributed to intermolecular ion–dipole interactions. The presence of rigid PPTA‐anion reinforcement alters the morphology; for example, the spherulite size is reduced, and the degree of crystallinity is lowered. Possible models of how the reinforcement is incorporated into the composite are presented. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1369–1376, 2000  相似文献   

3.
Waste poly(p‐phenylene terephthalamide) fibers (PPTA) were chemically modified through nitration and nitro‐reduction reactions to obtain nitro‐ and amino‐containing fibers and used as adsorbents for metal ions. The structures of the modified fibers were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), and thermogravimetric (TG) analysis. Metal ions, such as Ni2+, Pb2+, Cu2+, and Hg2+, were used to determine the adsorption capacities of the PPTA fibers before and after modification in aqueous solutions. The results showed that the modification improved the adsorption capability of fibers and extraction ratio of metal ions significantly. The adsorption mechanism of modified PPTA fibers for metal ions was proposed. The adsorption processes of Ni2+, Pb2+, and Cu2+ followed well a pseudosecond‐order model onto PPTA‐NH2. The Langmuir and Freundlich models were employed to fit the isothermal adsorption. The results revealed that the linear Langmuir isotherm model is better‐fit model to predict the experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Ultrafine fibers of a laboratory‐synthesized new biodegradable poly(p‐dioxanone‐co‐L ‐lactide)‐block‐poly(ethylene glycol) copolymer were electrospun from solution and collected as a nonwoven mat. The structure and morphology of the electrospun membrane were investigated by scanning electron microscopy, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and a mercury porosimeter. Solutions of the copolymer, ranging in the lactide fraction from 60 to 80 mol % in copolymer composition, were readily electrospun at room temperature from solutions up to 20 wt % in methylene chloride. We demonstrate the ability to control the fiber diameter of the copolymer as a function of solution concentration with dimethylformamide as a cosolvent. DSC and WAXD results showed the relatively poor crystallinity of the electrospun copolymer fiber. Electrospun copolymer membrane was applied for the hydrolytic degradation in phosphate buffer solution (pH = 7.5) at 37 °C. Preliminary results of the hydrolytic degradation demonstrated the degradation rate of the electrospun membrane was slower than that of the corresponding copolymers of cast film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1955–1964, 2003  相似文献   

5.
By introducing binary hydroxyl groups into poly(p‐phenylene benzoxazole) (PBO) macromolecular chains, we synthesized dihydroxy poly(p‐phenylene benzobisoxazole) (DHPBO) polymers and then prepared DHPBO fibers by dry‐jet wet‐spinning. Comparative studies were performed between intrinsic PBO fibers and DHPBO fibers. The effects of hydroxyl polar groups on improving the UV aging resistance of PBO fibers were investigated. With the introduction of hydroxyl groups, substantial changes in the chemical structures and surface morphologies of DHPBO fibers were observed. As proved by tensile testing and intrinsic viscosity measurement, the UV resistance of DHPBO fibers is obviously improved compared to that of intrinsic PBO fibers. XRD results indicate that the UV aging of these fibers occurs mainly on the surfaces of fibers. Based on these results, the mechanism of UV aging of PBO fibers was discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

7.
Reinvestigation of poly(2,6‐dimethyl‐1,4‐phenylene oxide) photodegradation at wavelengths > 290 nm shows that both methyl groups and aromatic rings are sites of oxidation with their relative rates dependent on exposure conditions, based on infrared spectroscopy. The methyl group loss is linear with exposure and apparently proceeds by direct abstraction of a benzylic hydrogen by oxygen. The aromatic ring loss and carbonyl growth in the IR spectra appear to be auto‐accelerating and seem to proceed by electron transfer to oxygen, either sensitized or through a direct reaction with oxygen, and recombination of the polymer radical cation and superoxide to result in oxygen addition to the ring. Molecular weight loss in solution occurs to a significant degree only in the presence of oxygen, even in the presence of a hydrogen‐donating solvent, indicating that aryl ether photolysis is not a major pathway. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2318–2331  相似文献   

8.
Poly(phenylene methylene) (PPM) exhibits pronounced blue fluorescence in solutions as well as in the solid state despite its non‐π‐conjugated nature. Optical spectroscopy was used to explore the characteristics and the physical origin of its unexpected optical properties, namely absorption in the 350–450 nm and photoluminescence in the 400–600 nm spectral regions. It is shown that PPM possesses two discrete optically active species, and a relatively long photoluminescence lifetime (>8 ns) in the solid‐state. Given the evidence reported herein, π‐stacking and aggregation/crystallization, as well as the formation of anthracene‐related impurities, are excluded as the probable origins of the optical properties. Instead there is sufficient evidence that PPM supports homoconjugation, that is: π‐orbital overlap across adjacent repeat units enabled by particular chain conformation(s), which is confirmed by DFT calculations. Furthermore, poly(2‐methylphenylene methylene) and poly(2,4,6‐trimethylphenylene methylene) – two derivatives of PPM – were synthesized and found to exhibit comparable spectroscopic properties, confirming the generality of the findings reported for PPM. Cyclic voltammetry measurements revealed the HOMO–LUMO gap to be 3.2–3.3 eV for all three polymers. This study illustrates a new approach to the design of light‐emitting polymers possessing hitherto unknown optical properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 707–720  相似文献   

9.
Poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers, abbreviated as PETNI, were synthesized via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate and bis(2‐hydroxyethyl) 5‐nitroisophthalate mixtures with molar ratios of these two comonomers varying from 95/5 to 50/50. Polymerization reactions were carried out at temperatures between 200 and 270 °C in the presence of tetrabutyl titanate as a catalyst. The copolyesters were characterized by solution viscosity, GPC, FTIR, and NMR spectroscopy. They were found to be random copolymers and to have a comonomer composition in accordance with that used in the corresponding feed. The copolyesters became less crystalline and showed a steady decay in the melting temperature as the content in 5‐nitroisophthalic units increased. They all showed glass‐transition temperatures superior to that of PET with the maximum value at 85 °C being observed for the 50/50 composition. PETNI copolyesters appeared stable up to 300 °C and thermal degradation was found to occur in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1934–1942, 2000  相似文献   

10.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

11.
Solid‐state nuclear magnetic resonance spectroscopy and relaxation measurements, together with DSC, have been used to elucidate the structures and molecular dynamics in poly(ethylene‐co‐vinyl acetate) (EVA). It has been found that besides immobile orthorhombic and monoclinic crystalline phases, the third mobile crystalline phase (possibly the phase) of a considerable amount (36% of total crystalline phases) appears in the EVA samples, which forms during room‐temperature aging as a result of the secondary crystallization and melts at temperature somewhat higher than room temperature. Such a mobile crystalline phase has not only the well‐defined chemical shift of its own, but also has different molecular mobility from the orthorhombic phase. The mobile crystalline phase is characterized by the rapid relaxation of the longitudinal magnetization, which is caused by conventional spin‐lattice relaxation, while the slow relaxation of the longitudinal magnetization occurring in the orthorhombic phase is originated from the chain diffusion. In addition, the amorphous phase also contains two components: an interfacial amorphous phase and a melt‐like amorphous phase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2864–2879, 2006  相似文献   

12.
In this study, novel biodegradable materials were successfully generated, which have excellent mechanical properties in air during usage and storage, but whose structure easily disintegrates when immersed in water. The materials were prepared by melt blending poly(L ‐lactic acid) (PLLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) with a small amount of oligomeric poly(aspartic acid‐co‐lactide) (PAL) as a degradation accelerator. The degradation behavior of the blends was investigated by immersing the blend films in phosphate‐buffered saline (pH = 7.3) at 40 °C. It was shown that the PAL content and composition significantly affected morphology, mechanical properties, and hydrolysis rate of the blends. It was observed that the blends containing PAL with higher molar ratios of L ‐lactyl [LA]/[Asp] had smaller PBAT domain size, showing better mechanical properties when compared with those containing PAL with lower molar ratios of [LA]/[Asp]. The degradation rates of both PLLA and PBAT components in the ternary blends simultaneously became higher for the blends containing PAL with higher molar ratios of [LA]/[Asp]. It was confirmed that the PLLA component and its decomposed materials efficiently catalyze the hydrolytic degradation of the PBAT component, but by contrast that the PBAT component and its decomposed materials do not catalyze the hydrolytic degradation of the PLLA component in the blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

13.
The idea of competing effects between intramolecular and intermolecular hydrogen bonding was investigated. Results indicate that the formation of one type of hydrogen bond does not preclude the formation of the other. The strength of the intermolecular association was measured by ab initio calculations for several polymer systems, including methyl pendant poly(p‐phenylene benzobisimidazole) and poly‐{2,6‐diimidazo[4,5‐b:4′5′‐e]pyridinylene‐1,4(2,5‐dihydroxy)phenylene} (PIPD). Fibers with strong intermolecular association have high compressive strength and torsional modulus. The influence of intermolecular hydrogen bonding on torsional modulus is discussed in light of the transverse texture present in poly(p‐phenylene terephthalamide) and some other high‐performance fibers. Enhanced intermolecular interaction not only influences the aforementioned properties but also results in higher fiber density. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3053–3061, 2000  相似文献   

14.
Copolyamides based on polyamide‐6,6 (PA‐6,6) were prepared by solid‐state modification (SSM). Para‐ and meta‐xylylenediamine were successfully incorporated into the aliphatic PA‐6,6 backbone at 200 and 230 °C under an inert gas flow. In the initial stage of the SSM below the melting temperature of PA‐6,6, a decrease of the molecular weight was observed due to chain scission, followed by a built up of the molecular weight and incorporation of the comonomer by postcondensation during the next stage. When the solid‐state copolymerization was continued for a sufficiently long time, the starting PA‐6,6 molecular weight was regained. The incorporation of the comonomer into the PA‐6,6 main chain was confirmed by size exclusion chromatography (SEC) with ultraviolet detection, which showed the presence of aromatic moieties in the final high‐molecular weight SSM product. The occurrence of the transamidation reaction was also proven by 1H nuclear magnetic resonance (NMR) spectroscopy. As the transamidation was limited to the amorphous phase, this SSM resulted in a nonrandom overall structure of the PA copolymer as shown by the degree of randomness determined using 13C NMR spectroscopy. The thermal properties of the SSM products were compared with melt‐synthesized copolyamides of similar chemical composition. The higher melting and higher crystallization temperatures of the solid state‐modified copolyamides confirmed their nonrandom, block‐like chemical microstructure, whereas the melt‐synthesized copolyamides were random. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5118–5129  相似文献   

15.
We present a detailed investigation of the kinetics associated with the glass transitions of miscible blends composed of atactic polystyrene (a‐PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO). According to both dynamic mechanical analysis and differential scanning calorimetry, relaxation times displayed an enhanced temperature dependence (i.e., more fragile or more cooperative behavior) for the blends compared with additive behavior based on the responses of neat a‐PS and PPO. This is consistent with the notion that specific interactions between the blend components heighten the intermolecular cooperativity. The compositional dependence of fragility provided insight into physical aging results for the properties of volume and enthalpy. The combination of our research and a previously reported pressure–volume–temperature study by Zoller and Hoehn (J Polym Sci Polym Phys Ed 1982, 20, 1385) provided evidence that the observation of increased glassy densities for the blends compared with those of the pure polymers was kinetic in origin and was not a feature of the thermodynamics of miscibility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2118–2129, 2001  相似文献   

16.
An important element in the microstructure of high performance fibers and films fabricated from rigid polymers is an interconnected network of oriented microfibrils, the lateral size of which is about 10 nm. This study is an attempt to elucidate the mechanism by which the microfibrils are formed so that larger lateral dimensions can be achieved by suitable processing. Because this morphology emerges in the coagulation stage of the spinning process, we compared the microfibrillar network formed by drastically different coagulation conditions. Ribbons, spun from solution of poly(p‐phenylene benzobisthiazole) in polyphosphoric acid through a slit die, were coagulated either in the ordinary rapid process with water (timescale of seconds) or in a slow process with phosphoric acid (timescale of hours). The coagulated microfibrillar network was dried with supercritical CO2 for X‐ray scattering measurements and impregnated with epoxy resin for sectioning and imaging by TEM. Slow coagulation yields better‐aligned microfibrils of enhanced chain packing, but the lateral size of the microfibrils formed in both cases is similar, about 10 nm. Heat treatment increases the width of water‐coagulated microfibrils but not the acid‐coagulated ones. The observations do not support spinodal decomposition as the mechanism of microfibril formation during coagulation, as was previously suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1087–1094, 2002  相似文献   

17.
To check the previously proposed crystal structure of poly(p‐phenylene benzobisoxazole) [PBO], we performed an X‐ray structure analysis for single crystals of low molecular weight model compounds with the following chemical formulas: Both of these two model compounds show essentially the same molecular and subcell structures as those of PBO: the molecular chains take an almost perfect planar conformation and are packed together with a relative height between the adjacent chains of about 3 Å along the chain axis, although for the polymer the chains are shifted by the same value but in a disordered mode with respect to the direction of the shift (upward or downward), different from the regular packing in model compounds. These structural features are reproduced well with energy calculations. Structural ordering in PBO fibers caused by heat treatment at high temperatures, as clarified by X‐ray diffraction measurement, are interpreted on the basis of the energy calculations. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1296–1311, 2001  相似文献   

18.
Generalized two‐dimensional (2D) Fourier transform infrared correlation spectroscopy was used to investigate the effect of the comonomer compositions on the crystallization behavior of two types of biosynthesized random copolymers, poly(hydroxybutyrate‐co‐hydroxyhexanoate) and poly(hydroxybutyrate‐co‐hydroxyvalerate). The carbonyl absorption band around 1730 cm?1 was sensitive to the degree of crystallinity. 2D correlation analysis demonstrated that the 3‐hydroxyhexanoate units preferred to remain in the amorphous phase of the semicrystalline poly(hydroxybutyrate‐co‐hydroxyhexanoate) copolymer, resulting in decreases in the degree of crystallinity and the rate of the crystallization process. The poly(hydroxybutyrate‐co‐hydroxyvalerate) copolymer maintained a high degree of crystallinity when the 3‐hydroxyvalerate fraction was increased from 0 to 25 mol % because of isodimorphism. The crystalline and amorphous absorption bands for the carbonyl bond for this copolymer, therefore, changed simultaneously. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 649–656, 2002; DOI 10.1002/polb.10126  相似文献   

19.
Segmented copolyesters, namely, poly(butylene terephthalate)–poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PBT‐PETIS), were synthesized with the melting transesterification processing in vacuo condition involving bulk polyester produced on a large scale (PBT) and ternary amorphous random copolyester (PETIS). Investigations on the morphology of segmented copolyesters were undertaken. The two‐phase morphology model was confirmed by transmission electron microscopy and dynamic mechanical thermal analysis. One of the phases was composed of crystallizable PBT, and the other was a homogeneous mixture of PETIS and noncrystallizable PBT. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2257–2263, 2003  相似文献   

20.
Poly (glycerol sebacate) (PGS) is a thermoset biodegradable elastomer considered as a promising candidate material for nerve applications. However, PGS synthesis is very time and energy consuming. In this study, the PGS pre‐polymer (pPGS) was synthesized using three synthesis times of 3, 5, and 7 hours at 170°C. Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy, X‐ray diffraction analysis, and differential scanning calorimetry thermogram were utilized to study the pPGS behavior. Poly (vinyl alcohol) was used as a carrier to fabricate aligned poly (vinyl alcohol)‐poly (glycerol sebacate) (PVA‐PGS) fibers with various ratios (60:40, 50:50, and 40:60) using electrospinning and crosslinked through the thermal crosslinking method. Morphology of the fibers was studied before and after crosslinking using scanning electron microscopy (SEM). FTIR, mechanical properties in the dry and wet state, water contact angle, in vitro degradation, and water uptake behavior of crosslinked scaffolds were also investigated. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, SEM analysis, and 4′, 6‐diamidino‐2‐phenylindole (DAPI) staining were utilized to determine the biocompatibility of scaffolds. The results show the synthesized pPGS in 3 hours at 170°C is the optimized sample in the terms of chemical reaction. All scaffolds have bead‐free and a uniform fiber diameter. The Young's modulus of crosslinked PVA‐PGS (50:50 and 40:60) fibers is shown to be in the expected range for nerve applications. The cell culture studies reveal PVA‐PGS (50:50 and 40:60) fibers could lead to better cell adhesion and proliferation. The results suggest that PVA‐PGS (50:50 and 40:60) is a suitable and promising biodegradable material in the fabrication of scaffolds for nerve regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号