首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The published data on the yielding of glassy polymers under a variety of testing conditions reveal that the yield stress increases with the elastic modulus. However, fundamental understanding of the interrelation has not yet been established. In this paper, a power law relation between the shear yield stress τy and the shear modulus G is presented: T0τy/Tτy0 = (T0G/TG0)n, where T is the absolute temperature, T0. is reference temperature, and τy0 and G0 are, respectively, the shear yield stress and the shear modules at T0. The exponent n takes a value 1.63 for amorphous polymers without exception, whereas it is about 0.8–0.9 for crystalline polymers. The exponent 1.63 for amorphous polymers is in good agreement with the value derived from the approximation of the Bowden–Raha dislocation analog. This law may enable us to investigate a model for the yielding of glassy polymers.  相似文献   

2.
An extended molecular‐dynamics study of the short‐time “glassy” elasticity exhibited by a polymer melt of linear fully‐flexible chains above the glass transition is presented. The focus is on the infinite‐frequency shear modulus G manifested in the picosecond time scale and the relaxed plateau Gp reached at later times and terminated by the structural relaxation. The local stiffness of the interactions with the first neighbors of each monomer exhibits marked distribution with average value given by G. In particular, the neighborhood of the end monomers of each chain are softer than the one of the inner monomers, so that G increases with the chain length. Gp is not affected by the chain length and is largely set by the nonbonding interactions, thus confirming for polymer melts the conjecture formulated by Tobolsky for glassy polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1401–1407  相似文献   

3.
The dynamic birefringence and the dynamic viscoelasticity of an oligostyrene, A1000, whose molecular weight (Mw = 1050) was comparable to the Kuhn segment size, MK, were examined near and above the glass‐transition temperature in order to characterize polymeric features of very short chains with MMK. The complex shear modulus, G*(ω), was similar to that for supercooled liquids: No polymeric modes such as the Rouse mode were detected at low frequencies of viscoelastic spectrum. On the other hand, the strain‐optical coefficient was found to be negative in the terminal flow zone and positive in the glassy zone. Because the negative birefringence of polystyrene is originated by polymeric modes associated with chain orientation, the present results indicate that polymeric modes exist and become dominant for birefringence in the terminal flow. The data were analyzed using a modified stress‐optical rule: The modulus and the strain‐optical ratio were separated into polymeric (rubbery) and glassy components. The total modulus, G*(ω), was mostly due to the glassy component, GG*(ω), resulting in the positive birefringence. GG*(ω) for A1000 agreed with that for high M polystyrenes when compared at a comparable reduced frequency scale. The polymeric component, GR*(ω), giving rise to the negative birefringence was lower than GG*(ω) over the whole frequency range but its contribution to the birefringence exceeded that of the glassy component at low frequencies because of the larger optical anisotropy and longer characteristic relaxation time of the former. The limiting modulus of GR* at high frequencies was about 3 times lower than that for high M polystyrenes, indicating that the main‐chain orientation of the oligostyrene on instantaneous deformation was reduced compared with that of high M polystyrenes. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 954–964, 2000  相似文献   

4.
A study was made of yield and plastic flow in glassy polystyrene. A range of 12 linear atactic polystyrenes was studied: monodisperse, bimodal blends, and a polydisperse commercial sample. Mn varied between 66,000 and 490,000 g/mol. These were given standardized thermal treatments and then subjected to uniaxial compression tests in the glassy state over the temperature range 40 to 95 °C and nominal strain-rates 10−4 to 10−3 s−1. Their constitutive responses were interpreted in terms of the physically based three-dimensional constitutive model for small or large deformations in amorphous polymers proposed earlier (Polymer 1995, 36, 3301–3312), including plastic strain-induced structural rejuvenation. In multimode form, the model captured closely both linear viscoelastic response and yield and plastic flow. When the reduction of Vogel temperature caused by chain ends was incorporated in the model, it predicted a fall in yield stress with reducing molecular length. This was also observed in experimental data, with the rate of fall approximately in agreement. The results provide further support for the model as a unifying framework for describing the physical properties of polymer glasses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2027–2040, 2004  相似文献   

5.
In this work, by adopting the united atom model of cis‐1,4‐poly(butadiene) (PB), we systemically investigate the effect of the chain structure on the glass transition temperature (Tg) and the viscoelastic property of PB system. First, we analyze the atom translational mobility, bond reorientation dynamics, torsional dynamics, conformational transition rate, and dynamic heterogeneity of the PB chains with different chain structures in detail by determining the corresponding Tg. In addition, our results clearly indicate that with the decrease of the amount of the free end atoms of PB via the end‐linking method, the mobility of the PB chains quickly decreases. As a result, the Tg of the PB chains gradually increases. Depending on the chain structure and the calculation method, the Tg of the PB chains varies from 154 to 240 K. In addition, the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg. The calculated activation energy varies from 7.37 to 16.37 KJ/mol for different chain structures above Tg, which can be compared with those for other polymers. In addition, through the end‐linking approach the strong interaction between the PB chains improves the storage modulus G′ and the loss modulus . Meanwhile, the immobility of the free end atoms effectively reduces the friction loss of the chains under the shear field, which is reflected by the low loss factor . In summary, this work can further help to understand the effect of the chain structure on the dynamic properties of the PB chains. Meanwhile, it provides an effective approach to reduce the energy loss during the dynamic periodic deformation, which can cut the fuel consumption via the end‐linking method. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1005–1016  相似文献   

6.
The microscopic process of abrasive wear and friction in glassy polymers was studied by using a special microscratch technique. A miscible blend of polystyrene (PS) and poly(phenylene oxide) (PPO) was used. It was found that as the composition varies there seems to exist two wear regimes in the blends controlled by different breakdown mechanisms corresponding to the brittle—ductile transition. Detailed study of the contact loads and SEM micrographs indicate that abrasive wear in the glassy polymers is controlled by microcracking under the asperity contacts. The critical load τc for initiating microscopic cracks can be linked to the macroscopic wear via a statistical Weibull model where τc is taken to be the mean of a strength distribution function. On the other hand, the friction coefficient was found to be independent of the composition but to vary strongly with the contact load. It approaches zero at the extrapolated zero load, but increases rapidly and eventually levels off with contact load. This behavior can be understood by a simple frictional adhesion model in which the polymer deformation during a frictional contact is analyzed by considering the compressive plastic ploughing and shearing yielding around the asperity contact. The shear strength So of the polymer/asperity contacts was found to vary with the normal load. The vertical scratch hardness Hv, which characterizes the spontaneous indentation yielding on the polymer surface, was found to be independent of scratch length and depth, and indeed can be regarded as a material constant. Although both So and Hv can accurately describe the frictional behavior of the glassy polymers, they bear no correlation to abrasive wear in the same materials. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1295–1309, 1997  相似文献   

7.
This article presents a method that provides the molecular weight distribution (MWD) of polymeric material from rheological data. The technique has been developed to deal with linear polymers with a log‐normal molecular weight distribution. The rheological data must include the shear storage modulus, G′(ω), and the shear loss modulus, G″ (ω), ranging from the terminal zone to the rubberlike zone. It was not necessary to achieve the relaxation spectrums via the extremely unstable problem of inverting integral equations. The method has been tested with different polymers (polydimethylsiloxane, polyisoprene, random copolymer of ethylene and propylene, and polystyrene) and the calculated MWDs were in good agreement with experimental data. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1539–1546, 2000  相似文献   

8.
Several aspects of anelastic deformation of glassy polymers that cannot be explained in terms of existing theories are considered. Resemblance in the stress-strain response for solids of various natures and structures, including semicrystalline and glassy polymers, organic and inorganic solids, and low-molecular-mass and high-molecular-mass compounds, is analyzed. It was pointed out that the phenomena of the yield peak, strain softening, strain concentration (localization) in narrow shear bands, and transient effects are characteristic of the plastic deformation of any solid. The same is true for differences in the kinetics and mechanism of deformation at low (T def < 0.7T g) and high deformation temperatures (T def > 0.7T g). The mechanism of plastic deformation is discussed in detail for glassy polymers; at microscopic and nanoscale levels, plastic deformation proceeds via two stages: initial nucleation of small-scale shear transformations and their further coalescence. This coalescence leads to the advance of the shear front in the sample and to the nucleation and displacement of classical shear bands. The heat of plastic deformation is released out at the coalescence of shear transformations. It was assumed that shear transformations are responsible for the development and evolution of the yield peak in glassy polymers, strain softening, and other phenomena. The proposed mechanism of deformation in glasses fully agrees with the results of thermodynamic measurements and other experimental data reported in the literature. Computer simulation makes it possible to visualize the scenario of nucleation and evolution of shear transformations at the atomic level.  相似文献   

9.
Tensile stress‐relaxation experiments with simultaneous measurements of Young's relaxation modulus, E, and the strain‐optical coefficient, C?, were performed on two amorphous polymers—polystyrene (PS) and polycarbonate (PC)—over a wide range of temperatures and times. Master curves of these material functions were obtained via the time‐temperature superposition principle. The value of C? of PS is positive in the glassy state at low temperature and time; then it relaxes and becomes negative and passes through a minimum in the transition zone from the glassy to rubbery state at an intermediate temperature and time and then monotonically increases with time, approaching zero at a large time. The stress‐optical coefficient of PS is calculated from the value of C?. It is positive at low temperature and time, decreases, passes through zero, becomes negative with increasing temperature and time in the transition zone from the glassy to rubbery state, and finally reaches a constant large negative value in the rubbery state. In contrast, the value of C? of PC is always positive being a constant in the glassy state and continuously relaxes to zero at high temperature and time. The value of Cσ of PC is also positive being a constant in the glassy state and increases to a constant value in the rubbery state. The obtained information on the photoelastic behavior of PS and PC is useful for calculating the residual birefringence and stresses in plastic products. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2252–2262, 2001  相似文献   

10.
The shear rate dependence of material functions such as shear viscosity (η) and the first normal stress difference (N1) were given and interpreted earlier by Kiss and Porter. Their widely accepted work revealed the possibility of having a negative minimum of N1 for polymeric liquid crystals. In this work, we disclose for the first time the evidence of two negative N1 minima on a sheared cellulosic lyotropic system. The lower shear rate minimum is ascribed to the uncoiling of the cholesteric helix, as theoretically predicted earlier. Our findings contribute also to the understanding of the other minimum already reported in the literature and attributed to the nematic director tumbling mode. Moreover, the elastic change that the LC‐HPC sample undergoes during the helix unwinding of the cholesteric structure is also by means of oscillatory measurements. This study is a contribution for the understanding of the structure‐properties relationship linked with the complex rheological behavior of chiral nematic cellulose‐based systems and may help to improve their further processing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 821–830  相似文献   

11.
Three network structure polymers formed by the chemical reactions of a triepoxide with aniline, 3-chloroaniline,and 4-chloroaniline were prepared and their shear modulus relaxation spectra studied over the 10−3- to 1-Hz range and temperatures up to their rubber modulus region. The decrease in the unrelaxed modulus with increase in temperature is found to be a reflection of both an increase in volume, and a decrease in the relaxed modulus of the sub-Tg relaxations process. It is quantitatively shown that the increase in the rubber modulus with increase in temperature above Tg is predominantly due to an increase in the entropy and not to a decrease in the number of cross-links density on thermal expansion. The unrelaxed modulus remained unaffected by the change in the overall size of the phenyl groups of the amines and of the steric hindrance to their rotations caused by the proximity of the chlorine atom to the cross-linking N-atom in the network structure, but the rubber modulus was effected. The shear modulus spectra could be fitted to a stretched exponential decay function with a temperature-independent stretch parameter of 0.25 for two polymers and 0.22 for one. The time–temperature superposition of the spectra did not yield a master curve, and a vertical displacement of the data also failed to produce it. This was more clearly demonstrated by the spectra of the mechanical loss tangent. After considering the various contributions to the shear modulus, it was concluded that deviations from the time–temperature superposition of the spectra are intrinsic to these polymers and arise from the change in the viscoelastic functions for segmental dynamics on change in the temperature such that the overall distribution of relaxation times remains unaffected. The mechanical loss tangent of the three polymers is found to be higher than that of polycarbonate at ambient temperature, implying a higher loss of mechanical energy before these polymers may fracture. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3071–3083, 1999  相似文献   

12.
Hardness Equation for Ormosils   总被引:2,自引:0,他引:2  
Hardness of ormosils coating on various kinds of substrates is important, and by considering recent progresses in understanding the hardness of ionic crystals or covalent crystals, new hardness equations for calculating the hardness of glasses or ormosils from chemical compositions were derived. When we applied an indenter to the surface of glass or sol-gel coatings, the surface of indenter is a declined one to the flat surface of glass or coating, thus the applied force should be analyzed by using the shear modulus, S, and Young's modulus, E. This is now well accepted for the analysis of hardness of ionic or covalent bonding inorganic materials. For example, by considering the binding energy and plastic deformation, Gilman showed that Hv of NaCl crystal can be calculated by an equation including elastic stiffness which indicated a good agreement between calculated and observed value. For covalent crystals he reported that the strength of chemical bonds could be correlated with the glide (shear) activation energy for covalent crystals quantitatively. These explanations are basically applied to the hardness of silicate glasses and ormosils. By considering both shear modulus and Young's modulus we have derived equations for calculating the hardness of glasses or ormosils from chemical composition, which includes packing density of atoms and bond energy per unit volume has been taken account. The agreements between calculated and observed hardness values for ormosils were comparatively good.  相似文献   

13.
This review summarizes the data published over the past two and a half decades on the mechanism of plastic deformation of bulk isotropic linear glassy polymers in uniaxial tension, compression, and shear at low deformation temperatures (Тdef < 0.6Тg) and moderate loading rates. The main attention is focused on studies concerning the numerical computer simulations of plasticity of organic polymer glasses. The plastic behavior of glassy polymers at nano-, micro-, and macrolevels in the range of macroscopic strains up to ≈100% is discussed. Plasticity mechanisms are compared for organic, inorganic, metallic, polymer, and nonpolymer glasses with different chemical structures and types of interparticle interactions. The general common mechanism of plasticity of glassy compounds, the nucleation of plasticity carriers in them, and the structure of such carriers and their dynamics are covered. Within the framework of the common plasticity mechanism, the specific features of deformation in glassy polymers are analyzed. Specifically, the participation of conformational transformations in macromolecules in the deformation response of polymer glasses, change in intensity of the yield peak with the thermomechanical prehistory of the sample, and the role of van der Waals interactions in the accumulation of excess potential energy by the sample under loading are considered. The role of free volume and structural and dynamic heterogeneities in the plasticity of glasses is also discussed.  相似文献   

14.
Dynamic mechanical analysis (DMA) was used to explore the thermomechanical properties of dried polyelectrolytes and polyelectrolyte complexes (PECs) with different thermal and humidity histories. Although differences in the amount of water remaining in polyelectrolytes and PECs were small for ambient versus dessicator storage, the properties of polyelectrolyte‐based materials were drastically different for different humidity histories. Glass transition temperatures (Tgs) of poly(diallyldimethylammonium chloride) (PDADMAC) were shown to vary by 100 °C, depending on humidity and thermal histories. These parameters also change glassy storage modulus values by 100%. Furthermore, we observe that dried PDADMAC is highly lossy. DMA of dried poly(styrene sulfonate) (PSS) was more complex and did not exhibit a glass transition in the tested range. DMA of a PEC of PDADMAC and PSS revealed a humidity history‐dependent water melt in the first heating cycle, as well as storage modulus values of dried and annealed PECs that only varied by 17–26% over a 275 °C temperature range. Based on these results, we report for the first time humidity history as controlling structure and properties of polyelectrolyte‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 684–691  相似文献   

15.
由碳酸钠诱导形成的油酸钠蠕虫状胶束的流变学性质   总被引:3,自引:0,他引:3  
曹泉  于丽  孙立新  郑利强  李干佐 《化学学报》2007,65(17):1821-1825
当Na2CO3浓度逐渐增加时, 用流变学的方法研究了阴离子表面活性剂油酸钠(NaOA)在溶液中从胶束转变成蠕虫状胶束的过程. 首先测量体系剪切粘度(η)和剪切速率的关系得到零剪切粘度(η0). 然后由动态振荡实验得到复合粘度(*|)、动态模量(储能模量G'、损耗模量G"和结构松弛时间τs)等物理量. 应用Cox-Merz规则和Cole-Cole图, 证明NaOA (0.040~0.080 mol/L)/Na2CO3 (0.25~0.50 mol/L)体系形成蠕虫状胶束, 且蠕虫状胶束的动态粘弹性在NaOA (0.050~0.080 mol/L)/Na2CO3 (0.35~0.45 mol/L)范围是符合Maxwell模型的线性粘弹性流体.  相似文献   

16.
The effect of ion‐dipole interaction between lithium cations and oxygen atoms in poly(methyl methacrylate) (PMMA), which leads to the great enhancement of glass transition temperature (Tg), on the linear viscoelastic properties is studied using binary blends of PMMA and lithium trifluoromethanesulfonate (LiCF3SO3). The strong interaction at low temperature leads to the high modulus in the glassy region even near Tg. The interaction becomes weak as increasing the temperature. Consequently, the rheological terminal region is clearly detected without a marked enhancement of steady‐state compliance, although the zero‐shear viscosity increases by the LiCF3SO3 addition. The result indicates that the crosslinking due to the ion‐dipole interaction has a lifetime that decides the longest relaxation time. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2388–2394  相似文献   

17.
The stress relaxation response in the glassy state just below Tg was measured for poly(methylmethacrylate) following application of constant strain rate uniaxial tensile deformation at various locations on the stress–strain curve, including the yield and post‐yield region. The macroscopic mobility was determined from analysis of the relaxation response. Up to a factor of 3 decrease in relaxation time was observed with the fastest relaxation occurring in the post‐yield softening region. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
The rheological behavior of polyaniline‐(±champhor‐10‐sulfonic acid)0.5m‐cresol [PANI‐CSA0.5m‐cresol] gel nanocomposites (GNCs) with Na‐montmorillonite clay (intercalated tactoids) is studied. The shear viscosity exhibits Newtonian behavior for low shear rate (<2 × 10?4 s?1) and power law variation for higher shear rate. The zero shear viscosity (η0) and the characteristic time (λ) increase but the power law index (n) decrease with increase in clay concentration. In the GNCs storage modulus (G′) and loss modulus (G″) are invariant with frequency in contrast to the pure gel. The G′ and G′ exhibit the gel behavior of the GNCs up to 105 °C in contrast to the melting for the pure gel at 75.7 °C. The percent increase of G′ of GNCs increases dramatically (619% in GNC‐5) with increasing clay concentration. The conductivity values are 10.5, 5.65, 5.51, and 4.75 S/cm for pure gel, GNC‐1, GNC‐3, and GNC‐5, respectively, promising their possible use in soft sensing devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 28–40, 2008  相似文献   

19.
The viscoelastic properties of decrosslinked irradiation‐crosslinked polyethylenes using a supercritical methanol were investigated via oscillatory dynamic shear measurements. Decrosslinked polymers at a low reaction temperature exhibited solid‐like rheological properties, as evidenced by a small slope at G′ and G″, a long relaxation time, slow stress relaxation behavior, and considerable yield stress. In contrast, decrosslinked polymers at a high temperature exhibited liquid‐like rheological properties that included a large slope in G′ and G″, a short relaxation time, fast stress relaxation behavior, and nonyield stress. The difference in the viscoelastic properties of the decrosslinked polyethylenes was attributed to the difference in the gel content with the reaction temperature. A higher gel content induced stronger solid‐like viscoelastic properties. Hence, the rheological measurements were useful for analyzing the molecular structure of decrosslinked polymers using a supercritical fluid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1265–1270, 2010  相似文献   

20.
The linear rheological responses of a series of specially designed wedge‐type polymers synthesized by the polymerization of large molecular weight monomers have been measured. These wedge polymers contained large side groups which contained three flexible branch chains per polymer chain unit. The master curves for these polymers were obtained by time temperature superposition of dynamic data at different temperatures from the terminal flow regime to well below the glass transition temperature, Tg. While these polymers maintained a behavior similar to that of linear polymers, the influence of the large side group structure lead to low entanglement densities and extremely low rubbery plateau modulus values, being near to 13 kPa. The viscosity molecular weight dependence was also somewhat higher than that normally observed for linear polymers, tending toward a power law near to 4.2 rather than the typical 3.4 found in entangled linear chains. The glassy modulus of these branched polymers is also found to be extremely low, being less than 100 MPa at Tg ?60 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 899–906  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号