首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study reports a green method for the synthesis of gold nanoparticles using the aqueous extract of rose petals. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, dynamic light scattering and transmission electron microscopy. Transmission electron microscopy experiments showed that these nanoparticles are formed with various shapes. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (-NH2), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles. Dynamic light scattering technique was used for particle size measurement, and it was found to be about 10nm. The rate of the reaction was high and it was completed within 5 min.  相似文献   

2.
The flower-like gold nanoparticles together with spherical and convex polyhedron gold nanoparticles were fabricated on boron-doped diamond (BDD) surface by one-step and simple electrochemical method through easily controlling the applied potential and the concentration of HAuCl(4). The recorded X-ray diffraction (XRD) patterns confirmed that these three shapes of gold nanoparticles were dominated by different crystal facets. The cyclic voltammetric results indicated that the morphology of gold nanoparticles plays big role in their electrochemical behaviors. The direct electrochemistry of hemoglobin (Hb) was realized on all the three different shapes of nanogold-attached BDD surface without the aid of any electron mediator. In pH 4.5 acetate buffer solutions (ABS), Hb showed a pair of well defined and quasi-reversible redox peaks. However, the results obtained demonstrated that the redox peak potential, the average surface concentration of electroactive heme, and the electron transfer rates of Hb are greatly dependent upon the surface morphology of gold nanoparticles. The electron transfer rate constant of hemoglobin over flower-like nanogold/BDD electrode was more than two times higher than that over spherical and convex polyhedron nanogold. The observed differences may be ascribed to the difference in gold particle characteristics including surface roughness, exposed surface area, and crystal structure.  相似文献   

3.
Kundu S  Peng L  Liang H 《Inorganic chemistry》2008,47(14):6344-6352
A highly effective, very fast microwave method is described to synthesize shape controlled gold nanoparticles in the presence of 2,7-dihydroxy naphthalene (2,7-DHN) as a new reducing agent under microwave heating for 60-90 s. The growth of the particles with different shapes (spherical, polygonal, rod, and triangular/prisms) was directed by the surfactant to metal ion molar ratios and the concentration of 2,7-DHN. The evolved nanorods and nanoprisms are fairly small in diameter, and the particle size and shape were successfully tuned just by varying the molar ratios of the reactants. The process presented here can be extended to the synthesis of other nanomaterials with desired size and shape and might find a variety of applications in wide areas, such as catalysis, clinical and diagnostic medicine, and nanoelectronics.  相似文献   

4.
Inductively coupled plasma mass spectrometry in single-particle mode (spICPMS) is a promising method for the detection of metal-containing nanoparticles (NPs) and the quantification of their size and number concentration. Whereas existing studies mainly focus on NPs suspended in aqueous matrices, not much is known about the applicability of spICPMS for determination of NPs in complex matrices such as biological tissues. In the present study, alkaline and enzymatic treatments were applied to solubilize spleen samples from rats, which had been administered 60-nm gold nanoparticles (AuNPs) intravenously. The results showed that similar size distributions of AuNPs were obtained independent of the sample preparation method used. Furthermore, the quantitative results for AuNP mass concentration obtained with spICPMS following alkaline sample pretreatment coincided with results for total gold concentration obtained by conventional ICPMS analysis of acid-digested tissue. The recovery of AuNPs from enzymatically digested tissue, however, was approximately four times lower. Spiking experiments of blank spleen samples with AuNPs showed that the lower recovery was caused by an inferior transport efficiency of AuNPs in the presence of enzymatically digested tissue residues.  相似文献   

5.
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.  相似文献   

6.
The biological synthesis of gold nanoparticles (AuNPs) of various shapes (triangle, hexagonal, and spherical) using hot water olive leaf extracts as reducing agent is reported. The size and the shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Only 20 min were required for the conversion into gold nanoparticles at room temperature, suggesting a reaction rate higher or comparable to those of nanoparticles synthesis by chemical methods. The variation of the pH of the reaction medium gives AuNPs nanoparticles of different shapes. The nanoparticles obtained are characterized by UV–Vis spectroscopy, photoluminescence, transmission electron microscopy (TEM), X-ray diffraction (XRD), FTIR spectroscopy and thermogravimetric analysis. The TEM images showed that a mixture of shapes (triangular, hexagonal and spherical) structures was formed at lower leaf broth concentration and high pH, while smaller spherical shapes were obtained at higher leaf broth concentration and low pH.  相似文献   

7.
The water-immiscible ionic liquid, [C4MIM][PF6], is a solvent medium that allows complete transfer of gold nanoparticles from an aqueous phase into an organic phase. Both spherical and rod-shaped gold nanoparticles are efficiently transferred from an aqueous solution into the organic phase without requiring the use of thiols. The sizes and shapes of the gold nanoparticles were preserved during the phase-transfer process when a surfactant was added to the ionic liquid. This process offers a simple approach for obtaining solutions of differently sized and shaped gold nanoparticles in ionic liquids.  相似文献   

8.
In this paper we present the effect of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer micelles and their hydrophobicity on the stabilization of gold nanoparticles. Gold nanoparticles were prepared by a method developed by Sakai et al. (Sakai, T.; Alexandridis, P. Langmuir 2004, 20, 8426). An absorption centered at 300-400 nm in time-dependent UV spectra provided evidence that the very first step of the synthesis was to form primary gold clusters. Then the gold clusters grew in size and were stabilized by block copolymer micelles. The stabilization capacities of the micelles were modulated by tuning the block copolymer concentration and composition and by adding salts. With good stabilization, gold particles were spherical and uniform in size with a diameter of 5-10 nm. Otherwise they were aggregates with irregular shapes such as triangular, hexagonal, and rodlike. The presence of a small amount of NaF significantly increased the stabilization capacity of the micelles and consequently modified the quality of the gold particles. Using FTIR and 1H NMR spectroscopy, micellization of the block copolymers and hydrophobicity of the micelles were proven very important for the stabilization. A higher hydrophobicity of the micelle cores was expected to favor the entrapment of primary gold clusters and the stabilization of gold nanoparticles.  相似文献   

9.
Ligands with a beta-diketone skeleton have been employed for the first time as reductant to produce ligand stabilized gold nanoparticles of different shapes from aqueous HAuCl(4) solution. Evolution of stable gold nanoparticles follows first order (k approximately equal to 10(-2) min(-1)) kinetics with respect to Au(0) concentration. Growth of particles of different shapes (spherical or triangular or hexagonal) goes hand in hand under the influence of different beta-diketones, which have excellent capping and reducing properties. Chlorine insertion was observed to take place in the beta-diketone skeleton.  相似文献   

10.
Zhao W  Yao C  Luo X  Lin L  Hsing IM 《Electrophoresis》2012,33(8):1288-1291
We report a simple staining-free gel electrophoresis method to simultaneously probe protease and nuclease. Utilizing gold nanoparticles (Au-NPs) dual-functionalized with DNA and peptide, the presence and concentration of nuclease and protease are determined concurrently from the relative position and intensity of the bands in the staining-free gel electrophoresis. The use of Au-NPs eliminates the need for staining processes and enables naked eye detection, while a mononucleotide-mediated approach facilitates the synthesis of DNA/peptide conjugated Au-NPs and simplifies the operation procedures. Multiplex detection and quantification of DNase I and trypsin are successfully demonstrated.  相似文献   

11.
The seed-mediated approach to making gold nanorods in aqueous surfactant solutions has become tremendously popular in recent years. Unlike the use of strong chemical reductants to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction. The metal content of gold nanorods, made in high yield in the presence of silver ion, is determined by inductively coupled plasma atomic emission spectroscopy. Through the use of the known gold concentration in nanorods, molar extinction coefficients are calculated for nanorods of varying aspect ratios from 2.0 to 4.5. The extinction coefficients at the longitudinal plasmon band peak maxima for these nanorods vary from 2.5x10(9) to 5.5x10(9) M-1 cm-1, respectively, on a per-particle basis. Many of the gold ions present in the growth solution remain unreacted; insights into the growth mechanism of gold nanorods are discussed.  相似文献   

12.
There has been enormous interest in the last decade in development methods for the inorganic synthesis of metallic nanoparticles of desired sizes and shapes because of their unique properties and extensive applications in catalysis, electronics, plasmonics, and sensing. Here we report on an environmentally friendly, one-pot synthesis of metallic nanoparticles, which avoids the use of organic solvents and requires mild experimental conditions. The developed method uses liposomes as nanoreactors, where the liposomes were prepared by encapsulating chloroauric acid and exploited the use of glycerol, incorporated within the lipid bilayer as well as in its hydrophilic core, as a reducing agent for the controlled preparation of highly homogeneous populations of gold nanoparticles. The effects of temperature, the presence of a capping agent, and the concentration of glycerol on the size and homogeneity of the nanoparticles formed were investigated and compared with solution-based glycerol-mediated nanoparticle synthesis. Well-distributed gold nanoparticle populations in the range of 2-8 nm were prepared in the designed liposomal nanoreactor with a clear dependence of the size on the concentration of glycerol, the temperature, and the presence of a capping agent whereas large, heterogeneous populations of nanoparticles with amorphous shapes were obtained in the absence of liposomes. The particle morphology and sizes were analyzed using transmission electron microscopy imaging, and the liposome size was measured using photon correlation spectroscopy.  相似文献   

13.
In this paper, we describe a new procedure to phase transfer large gold nanoparticles (diameters > 45 nm) from aqueous solution to organic solvents. This is accomplished using a covalent amide coupling reaction that incorporates dicyclohexylamine (DCHA) headgroups on the surface of mercaptoacetic acid (MAA) functionalized gold nanoparticles. Gold nanoparticles are first synthesized in aqueous solution by the citrate-reduction method, and nanoparticle size is controlled by the molar ratio of the reducing agent (sodium citrate) and the gold precursor (KAuCl4). MAA is then adsorbed to the surface of the gold nanoparticles followed by an amide-coupling reaction to covalently attach DCHA to the surface-immobilized MAA. The bulky dicyclohexyl groups entropically stabilize gold nanoparticles in organic solvents. This procedure was used to reliably transfer gold nanoparticles with diameters between 45 and 100 nm from aqueous solution to organic solvents such as dimethyl sulfoxide and chloroform.  相似文献   

14.
In this study, we present a simple and eco-friendly method for extracellular biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 cell-free supernatant. The research was also aimed to evaluate the effects of different reaction parameters including incubation temperature, reaction time, HAuCl4 concentration and pH on gold nanoparticles production. The UV?CVis spectroscopy was used to monitor the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized with XRD, TEM, and SEM. The average particle size ranged from 10 to 30?nm with spherical shape at optimum conditions.  相似文献   

15.
The synthesis of metal nanoparticles of different sizes, shapes, chemical composition and controlled monodispersity is an important area of research in nanotechnology because of their interesting physical properties and technological applications. Present work describes an eco-friendly method for the synthesis of spherical gold nanoparticles using aqueous extract of Macrotyloma uniflorum. The effects of quantity of extract, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles with fcc phase is evident from HRTEM images, SAED and XRD patterns. Synthesized nanoparticles have size in the range 14-17nm. FTIR spectrum indicates the presence of different functional groups present in the bio-molecule capping the nanoparticles. The possible mechanism leading to the formation of gold nanoparticles is suggested.  相似文献   

16.
Surface-enhanced Raman scattering (SERS) probes based on gold nanoparticles modifying the core of the optical fiber were made by a surfactantless photochemical deposition method. The growth kinetics and shape evolution of gold nanoparticles depending on different experimental conditions were studied. It was found that, under the condition of detectable gold nanoparticle deposition, increasing the concentration of chloroauric acid (HAuCl(4)) was not conducive to the deposition whereas increasing the concentration of sodium citrate (Na(3)Ct) would speed up the deposition. By controlling the concentration of the reaction solution and irradiation time, we obtained fused spherical-like, spherical, and flowerlike gold nanoparticles. To test the SERS activity of the probes, the SERS spectra of a rhodamine 6G aqueous solution were recorded in direct detection mode and remote mode. We have also developed a new approach to improving the SERS sensitivity when detecting in remote mode.  相似文献   

17.
We investigate the preparation of nearly monodisperse gold nanoparticles by heat treatment in different conditions. The effects of various solvents, heating temperature, and heating time length on the monodispersity of gold nanoparticles were studied systematically and a general route to generate gold nanoparticles with uniform size was determined. The first step was to prepare gold nanoparticles with less than 3 nm and the following operation was to heat the gold nanoparticles in the present of thiolated solvents where monodispersed gold nanoparticles could be obtained easily. Our approach has enriched synthesis of monodisperse gold nanoparticles, and may provide some valuable experimental data about how the heating process affects the size evolution of gold nanoparticles.  相似文献   

18.
The interaction of water-soluble CdSe quantum dots (QDs) with gold (Au) nanoparticles was investigated by ultraviolet visible absorption spectroscopy. The results showed that the aggregation of Au nanoparticles was induced by CdSe QDs. The influences of factors such as the size of Au nanoparticles, acidity, buffer concentration and the concentration ratio of the CdSe QDs to Au nanoparticles were each investigated. The comparison of two different particle sizes (16 and 25 nm) of Au nanoparticles that interact with CdSe QDs in the solution showed that the aggregation of small Au nanoparticles (16 nm) is easier than that of big Au nanoparticles (25 nm). At pH 7.0 phosphate buffer solution (0.02 M), the optimal molar ratio of CdSe:Au is about 3100:1 according to calculations.  相似文献   

19.
Gold nanochains were prepared by the assembly of citrate-stabilized gold nanospheres induced by cationic conjugated polymers. This assembly method was rapid, and the assembled product was very stable. A longitudinal plasmon resonance band was formed as a result of the coupling of gold nanoparticles and can be tuned from visible to near-infrared by adjusting the polymer/Au molar ratio. The gold nanochains were used as a SERS substrate and gave an enhancement factor of 8.4 x 10 (9), which is approximately 400 times larger than that on the isolated gold nanosphere substrate. The giant SERS enhancement is ascribed to the large electromagnetic fields of coupled gold nanoparticles.  相似文献   

20.

A simple method for preparing gold nanoparticles in aqueous solution has been developed by using glycosaminoglycan‐heparin as reducing and stabilizing agent and HAuCl4 as precursor. The obtained gold nanoparticles were characterized by UV‐vis spectroscopy, resonance light scattering spectroscopy (RLS), transmission electron microscopy (TEM) and electrophoresis technology. The influence of reactant concentration for the preparation of gold nanoparticles was investigated. The results indicated that the gold nanoparticles carried negative charges in the aqueous solution and the size and shape of the gold nanoparticles could be controlled by changing the concentration of the heparin. Moreover, the gold nanoparticles obtained with relatively high concentration of heparin were very stable and had relative narrow size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号