首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
单糖衍生物的电喷雾质谱裂解规律研究   总被引:1,自引:1,他引:0  
以1-(2-萘基)-3-甲基-5-吡唑啉酮(NMP)作单糖标识剂, 经在线串联的LC-ESI-MS建立了单糖衍生物的电喷雾质谱裂解方法.衍生物在质谱裂解中糖类化合物特有的规范信息.借助糖类化合物在ESI-MS条件下表现出的分子离子峰m/z [M H] , 及在ESI-MS/MS条件下呈现出的特征碎片离子峰m/z 473, 可有效地确定出单糖类化合物的组成. 尽管一些脂肪醛和芳香醛也能同时被标识, 然而在质谱条件下不产生m/z 473的特征碎片离子峰, 且它们的洗脱远在糖类组分之后, 因此不干扰糖类化合物的分离和结构确定.通过建立的LC-ESI-MS方法, 对水解蜂花粉中的单糖进行了分析.结果表明: 水解的蜂花粉中含甘露糖(Man)、半乳糖醛酸(GalUA)、葡萄糖醛酸(GlcUA)、鼠李糖(Rha)、葡萄糖 (Glc)、半乳糖(Gal)、阿拉伯糖(Ara)、木糖(Xyl)和岩藻糖(Fuc).本方法为环境样品中单糖类化合物的确定提供了准确、可靠的技术手段.  相似文献   

2.
A sensitive method for the determination of free fatty acids using 1,2-benzo-carbazole-9-ethyl-p-toluenesulfonate (BCETS) as tagging reagent with fluorescence detection has been developed. BCETS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 80 °C for 30 min in N,N-dimethylformamide solvent. In this study, fatty acids from the extracted Potentilla anserina L. plant sample were sensitively determined. The corresponding derivatives were separated on a reversed-phase Eclipse XDB-C8 column by LC in conjunction with gradient elution. The identification was carried out by post-column APCI-MS in positive-ion detection mode. BCETS-fatty acid derivatives gave an intense molecular ion peak at m/z [M+H]+, the collision-induced dissociation spectra of m/z [M+H]+ produced the specific fragment ions at m/z [M′+CH2CH2]+, m/z 216.6 and m/z [MH?H2O]+ (here, M′: corresponding molecular mass of the fatty acids). The fluorescence excitation and emission wavelengths of the derivatives were at λ ex 279 nm and λ em 380 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are more than 0.9994. Detection limits, at a signal-to-noise ratio of 3:1, are 10.79–34.19 fmol for the labeled fatty acids.  相似文献   

3.
The metastable decompositions of trimethylsilylmethanol, (CH3)3SiCH2OH (MW: 104, 1) and methoxytrimethylsilane, (CH3)3SiOCH3 (MW: 104, 2) upon electron ionization have been investigated by use of mass-analyzed ion kinetic energy (MIKE) spectroscopy and D labeling. The metastable ions of 1 ·+ decompose to give the fragment ions m/z 89 (CH 3 · loss) and 73 (·CH2OH loss), whereas those of 2 ·+ only yield the fragment ion m/z 89 (CH 3 · loss). The latter fragment ion is generated by loss of a methyl radical from the trimethylsilyl group via a simple cleavage reaction as shown by D labeling. However, the fragment ions m/z 89 and 73 from 1 ·+ are generated following an almost statistical exchange of the original methyl and methylene hydrogen atoms in the molecular ion as shown also by D labeling. This exchange indicates a complex rearrangement of the molecular ion of 1 ·+ prior to metastable decomposition for which as key step a 1,2-trimethylsilyl group migration from carbon to oxygen is suggested. A different behavior is also found between the source-generated m/z 89 ions from 1 ·+ which decompose in the metastable time region to give ions m/z 61 by loss of ethylene and those from 2 ·+ which decompose in the metastable region to yield ions m/z 59 by elimination of formaldehyde.  相似文献   

4.
A pre-column derivatization method for the simple, sensitive determination of biogenic amines using 10-ethyl-acridine-3-sulfonyl chloride (EASC) as labeling reagent with fluorescence detection and mass spectrometry (MS) identification has been developed. After pre-column derivatization, the labeled biogenic amines were separated on a Hypersil BDS-C18 column by gradient elution. The derivatives showed an intense protonated molecular ion corresponding m/z [M + H]+ in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed specific fragment ions at m/z 196.5, m/z 222.7, m/z 224.4 and m/z 272.5, m/z 286.2. Satisfactory linear responses were observed at the concentration range of 0.02?C10 ??mol L?1 with coefficients of >0.9993. Detection limits obtained by the analysis of a derivatized standard containing 0.2 pmol of each biogenic amine, were from 20.22 to 109.2 fmol (at a signal-to-noise ratio of 3). The relative standard deviations of retention times and peak areas for each biogenic amine were <0.96 and 3.22%, respectively. Recoveries except for PUT were in the range of 96.7?C103.6% for chicken sausage and 95.8?C104.6% for pork sausage The established method for the determination of biogenic amines except for PUT from real samples was satisfactory.  相似文献   

5.
A highly selective and accurate method based on derivatization with dansyl chloride coupled with liquid chromatography–mass spectrometry has been developed for identification of natural pharmacologically active phenolic compounds in extracts of Lomatogonium rotatum plants (Tibetan herbal medicine) obtained by solid-phase extraction. The number of hydroxyl groups on the dansylated phenols was estimated by LC–MS–MS analysis in positive-ion mode. Dansyl derivatization of the compounds introduced basic secondary nitrogen into the phenolic core structures and this was readily ionized when acidic HPLC mobile phases were used. MS fragmentation of the derivatives generated intense protonated molecular ions of m/z [MH]+ (phenol aglycones were transformed into the corresponding free phenols by cleavage of an aglycone bond). Collision-induced dissociation of the protonated molecule generated characteristic product ions of m/z 234 and 171 corresponding to the protonated 5-(dimethylamino)naphthalene sulfoxide and 5-(dimethylamino)naphthalene moieties, respectively. Selected reaction monitoring based on the m/z [MH]+ to 234 and 171 transitions was highly specific for these phenolic compounds. Characteristic ions with m/z values of [MH – 234]+, [MH – 2 × 234]+, and [MH – 3 × 234]+ were of great importance for estimation of the presence of multihydroxyl groups on the phenolic backbone.  相似文献   

6.
A rapid and sensitive liquid chromatographic–tandem mass spectrometric method has been developed and validated for the estimation of sarpogrelate in human plasma. Sarpogrelate was extracted from human plasma by solid-phase extraction. Temocapril was used as the internal standard. Heated electron spray ionization mass spectrometry was performed on a TSQ Quantum Ultra MS system. The LC column was a Hypurity C18 and the mobile phase was 2 mM ammonium formate (pH 3.00 ± 0.05):acetonitrile (30:70 v/v). A flow rate of 0.250 mL min?1 was used. The quantitative analyses were carried out in the positive ion and full scan mode over the mass range m/z 60–500. The capillary, vaporiser temperatures were 325 and 200 °C respectively. The sheath gas pressure, spray voltage, collision energy and tube lense were 40, 3,500 V, 19 V, 198 V, respectively, and the mass spectra of the drugs were recorded by total ion monitoring. Retention times and characteristic mass fragments were recorded and the chosen diagnostic mass fragments were monitored in the mass chromatography mode. Signal intensities of each of the mass fragments: m/z 477 [M + H]+ for temocapril, m/z 430 [M + H]+ for sarpogrelate, were used for quantification. The calibration curves (the ratio between the peak areas as signal intensities of the drug analyzed and that of the internal standard (temocapril: m/z 477 [M + H]+) vs. the concentration of drug) exhibited linearity over the concentration range 5.00–2,500.00 ng mL?1 human plasma. The recovery and the accuracy were calculated by comparing the peak areas as the signal intensities of each mass fragment for the drug in spiked samples after solid-phase extraction from human plasma to the peak area as the signal intensity of the mass fragment of internal standard sample. The method involves a rapid solid phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection up to picogram levels with a total run time of 3.0 min only. The method was validated over the range of 5.0–2,500.0 ng mL?1. The absolute recoveries for sarpogrelate (93.72%) and IS (91.42%) achieved from spiked plasma samples were consistent and reproducible.  相似文献   

7.
Curcumin, a polyphenolic compound, has shown a wide range of pharmacological activities and has been widely used as a food additive. However, the clinical use of curcumin is limited to some extent because of its poor water solubility and low bioavailability. To overcome these problems, many approaches have been attempted and structural modification of curcumin by microbial transformation has been proven to be an alternative. In this study, we isolated a novel yeast strain Pichia kudriavzevii ZJPH0802 from a soil sample, which is capable of converting curcumin to its derivatives. The transformed products by this strain were evaluated by HPLC, (+) electrospray ionization (ESI)-MSn, and 1H nuclear magnetic resonance methods. Compared with controls, two new peaks of the transformed broth appeared at retention times of 26 min (I) and 62 min (II) by HPLC analysis. The two transformed products were then further identified by (+) ESI-MSn. The spectrum showed that compound I had an accurate [M+H+NH3]+ ion at m/z 392, [M+H]+ ion at m/z 375, [M+H–H2O]+ ion at m/z 357, and (+) ESI-MS3 spectrum showed that ion at m/z 357 could further form fragment ions at m/z 339, 177, and 163; compound II had an accurate [M+H]+ ion at m/z 373, [M+H–H2O]+ ion at m/z 355, and (+) ESI-MS3 spectrum showed that ion at m/z 355 could further form fragment ions at m/z 219, 179, 177, 163, and 137. These two transformed products thereby were confirmed as hexahydrocurcumin (I) and tetrahydrocurcumin (II).  相似文献   

8.
Multiple-stage mass spectrometry involving consecutive collision-activated dissociation reactions was used to examine the structures of fragment ions commonly formed on electron ionization of organophosphorus esters. The compounds studied include several aryl thiophosphates, some of which are analogs of common pesticides. Energy-resolved collisionactivated dissociation experiments allow the dissociation of the molecular ions of these compounds in such a manner that only a few fragment ions dominate the spectrum. An abundant fragment ion of m/z 109, formed from all of the compounds studied, can have at least four different stable structures: (CH3O)2PO+, CH3CH2OP(O)OH+, CH2 =CHOP(H)(OH)2 +, and (CH2O)2P(H)OH+. The structure of the fragment ion of m/z 109 was found to reflect the phosphorus-containing part of the compounds studied. Another abundant fragment ion obtained for all the aryl esters studied is structurally characteristic of the aromatic moiety of the molecule. This fragment ion is the result of a complex rearrangement involving transfer of an alkylene group to the aromatic ring from the phosphoruscontaining part of the molecular ion. The utility of these fragment ions in the structural characterization of unknown organophosphorus esters is discussed.  相似文献   

9.
The UV/Vis spectra of the m-methyl red (m-MR) ({3-[4-(dimethyl-amino) phenylazo] benzoic acid}) were examined in aqueous solutions at various acidities. These were characterized by the overlap of the different bands of m-MR. The thermodynamic acid dissociation constant, K a2, of the equilibrium between m-H2MR+ (diprotic form) and m-HMR (monoprotic form) was determined as 1.02 × 10?2 at 25 °C, and that for the equilibrium between m-HMR and MR? (basic form), Ka3, was determined as 4.94 × 10?5 at 25 °C. Based on the two observed K a values, the distribution diagram of the three forms of m-MR in water was constructed. The neutral monoprotic form (m-HMR) has a maximum fraction of 0.883 at pH = 3.14.  相似文献   

10.
A rapid liquid chromatographic method with electrospray ionization tandem mass spectrometric detection has been developed and validated for quantification of quetiapine in heparinized human plasma. Plasma samples, without a drying and reconstitution step, were extracted by solid-phase extraction and eluted with acetonitrile. The analyte and zolpidem tartrate (internal standard, IS) were chromatographed on a C18 column; the mobile phase was 85:15 (v/v) acetonitrile–5 mM ammonium formate, pH adjusted to 4.5 with formic acid, at a flow rate of 0.5 mL min?1. The retention times of quetiapine and the IS were 1.25 and 1.05 min, respectively, and the run time was 1.8 min per sample. Selected reaction monitoring of MH+ at m/z 384.12 and 308.11 resulted in stable fragment ions with m/z 253.02 and 235.09 for quetiapine and the IS, respectively. Response was a linear function of concentration in the range 1.0–240.0 ng mL?1, with r ≥ 0.9994. Recovery of quetiapine and the IS ranged from 74.82 to 85.57%. The assay has excellent characteristics and has been successfully used for analysis of quetiapine in healthy human subjects in a bioequivalence study.  相似文献   

11.
Mass spectra of the three isomeric vinylimidazoles have been compared and the structures of the fragment ions [C3H4N2] and [C5H5N2]+ have been investigated by collisionally activated dissociation mass spectrometry. The greater part of the non-decomposing ions m/z 68 from 2-vinylimidazole and from 2-imidazolecarboxylic acid methyl ester, and a minor part of this ion formed from the free acid, all have the same structure: the imidazole ring system, with hydrogens at both nitrogen atoms but none at C(2). An analogous structure, with an ethyl group at C(2), is proposed for the m/z 93 ion from 2-vinylimidazole.  相似文献   

12.
The spontaneous unimolecular dissociation reaction of methyl lactate (1) ionized by electron impact was investigated by a combination of mass-analyzed ion kinetic energy spectrometry and deuterium labeling. The metastable ions 1 decompose in a variety of ways: four fragment peaks are observed at m/z 89, 76, 61, and 45, which correspond to the losses of ?H3, CO, CH3?O, and ?OOCH3, respectively. Double hydrogen atom transfer occurs in the third reaction. The source-generated m/z 61 ions decompose into oxygen-protonated methanols at m/z 33 ([CH3OH 2 + ]) by the loss of CO with double hydrogen atom migration. Both hydroxyl and methyne hydrogen atoms in 1 are present in the resultant protonated methanols.  相似文献   

13.
A study of the ion chemistry of benzenethioic acid using ion cyclotron resonance techniques shows that a long-lived ion of composition C7H5S+ is formed from the reaction of the neutral acid with primary fragment ions, m/z 77 (phenyl) and m/z 105 (benzoyl). The product is assigned the thiobenzoyl structure on the basis df its mode of formation from benzoyl cations and tbe neutral acid. Other reactant ions (acetylium and thioacetylium) derived from mixtures of benzenethioic acid with ethanethioic acid or acetate esters similarly lead to thiobenzoyl ions as the major product The significance of these results as support for the thioacetylium structure of C2H3S+ ions from ethanethioic acid is discussed.  相似文献   

14.
A sensitive and selective liquid chromatography?Ctandem mass spectrometry method for the determination of pethidine and atropine in rabbit plasma was developed and validated. The analytes and internal standard (IS) are extracted from plasma by liquid?Cliquid extraction using ethyl acetate, and separated on a Zorbax SB-Aq column (2.1 × 150 mm, 3.5 ??m) using acetonitrile?C0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode, and multiple reaction monitoring mode was used for quantification using target fragment ions m/z 247.8 ?? 219.7 for pethidine, m/z 289.9 ?? 123.8 for atropine and m/z 295.0 ?? 266.8 for IS, respectively. The assay is linear over the range of 5?C1,000 ng mL?1 for pethidine and atropine, with a lower limit of quantification of 3 ng mL?1 for pethidine and 5 ng mL?1 for atropine. Intra-day and inter-day precision are less than 11% and the accuracy are in the range of 90.4?C106.3%. Furthermore, the newly developed method is successfully used for the determination of pethidine and atropine in rabbit plasma for pharmacokinetic study.  相似文献   

15.
A mass spectrometry-based method that does not involve the use of radiolabeling was developed for selective detection of phosphopeptides in complex mixtures. Mixtures of phosphorylated and nonphosphorylated peptides at the low picomole level are analyzed by negative ion electrospray liquid chromatography/mass spectrometry using C-18 packed fused-silica columns (≤320-μm i.d.). Peptides and phosphopeptides in the chromatographic eluant undergo collision-induced dissociation in the free-jet expansion region prior to the mass analyzing quadrupole. Using relatively high collisional excitation potentials, phospho|peptides containing phosphoserine, phosphothreonine, and phosphotyrosine fragment to yield diagnostic ions at m/z 63 and 79 corresponding to PO2 ?; and PO3 ?, respectively. Chromatographic peaks containing phosphopeptides are indicated where these diagnostic ions maximize. The highest sensitivity for phosphopeptide detection is obtained using selected-ion monitoring for m/z 63 and 79. Full-scan mass spectra that exhibit the diagnostic phosphopeptide fragment ions, together with pseudomolecular ions, may be obtained by stepping the collisional excitation potential from a high value during the portion of each scan in which the low-mass-to-charge ratio diagnostic marker ions are being detected to a lower value while the upper mass-to-charge ratio range is being scanned. Good sensitivity for phosphopeptide detection was achieved using standard trifluoroacetic acid containing mobile phases for reversed-phase high-performance liquid chromatography. Data illustrating the selectivity and sensitivity of the approach are presented for mixtures of peptides and phosphopeptides containing the three commonly phosphorylated amino acids.  相似文献   

16.
The mass spectral fragmentations of ten of the title compounds are discussed. All the 3,4-quinolinediyl bis-sulphides give characteristic ions at m/z 159 and 132 while 3- and 4-quinolinyl sulphides form ions at m/z 160 and 133. The most characteristic distinction between 3- and 4-quinolinyl sulphides is the intensity of the [M - 1]+ ion. The elimination of ·SH and ·CH3 radicals is also different.  相似文献   

17.
The assignment of the mass (m) value from the m/z value for ions with a multiple number of charges (z) in electrospray mass spectra usually utilizes multiple peaks of the same m but different z values, or unit-mass—separated isotopic peaks of the same z value from high resolution spectra. The latter approach is also feasible with much less resolving power using adduct ions of much higher mass separation. The application of this to mixture spectra containing many masses, such as spectra from tandem mass spectrometry (MS/MS) ion dissociation, does not appear to have been pointed out previously. Thus, replacing two protons by one Cu2+ ion increases the mass by 61.5 Da, with this shift providing a mass scale for assignment of m and z from this pair of m/z values. The more common Na+ adduct peaks provide a 22.0 Da separation, of utility for 1000 resolving power only below approximately 10 kDa. Further, collisional dissociation lowers the degree of Cu2+ adduction in the resulting sequence-specific fragment ions much less than that of the corresponding Na+ adducts, making the Cu2+ adducts far more useful for m and z determination in MS/MS studies.  相似文献   

18.
A pre-column derivatization method for the sensitive determination of aldehydes using the tagging reagent 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl carbonylhydrazine (DBCEEC) followed by high-performance liquid chromatography with fluorescence detection and APCI-MS identification has been developed. The chromophore of fluoren-9-methoxy-carbonylhydrazine (Fmoc-hydrazine) reagent was replaced by 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl functional group, which resulted in a sensitive fluorescence tagging reagent DBCEEC. DBCEEC could easily and quickly labeled aldehydes. The maximum excitation (300 nm) and emission (400 nm) wavelengths did not essentially change for all the aldehyde derivatives. Derivatives were sufficiently stable to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z [M + (CH2)n]+ in positive-ion mode (M: molecular weight of DBCEEC, n: corresponding aldehyde carbon atom numbers). The collision-induced dissociation of protonated molecular ion formed fragment ions at m/z 294.6, m/z 338.6 and m/z 356.5. Studies on derivatization demonstrated excellent derivative yields in the presence of trichloroacetic acid (TCA) catalyst. Maximal yields close to 100% were observed with a 10 to 15-fold molar reagent excess. Separation of the derivatized aldehydes had been optimized on ZORBAX Eclipse XDB-C8 column with aqueous acetonitrile as mobile phase in conjunction with a binary gradient elution. Excellent linear responses were observed at the concentration range of 0.01-10 nmol mL−1 with coefficients of >0.9991. Detection limits obtained by the analysis of a derivatized standard containing 0.01 nmol mL−1 of each aldehyde, were from 0.2 to 1.78 nmol L−1 (at a signal-to-noise ratio of 3).  相似文献   

19.
A sensitive LC–MS–MS method with electrospray ionization has been developed for determination of nikethamide in human plasma. After addition of atropine as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 mm × 2.1 mm, 5 μm particle, Agilent Zorbax SB-C18 column, with 45:55 (v/v) methanol–water containing 0.1% formic acid as mobile phase. LC–MS–MS was performed in multiple reaction monitoring mode using target fragment ions m/z 178.8 → 107.8 for nikethamide and m/z 289.9 → 123.8 for the internal standard. Calibration plots were linear over the range of 20.0–2,000 ng mL?1. The lower limit of quantification was 20.0 ng mL?1. Intra-day and inter-day precisions were better than 4.2 and 6.1%, respectively. Mean recovery of nikethamide from human plasma was in the range 65.3–71.1%.  相似文献   

20.
An LC-MS method was developed and validated to determine lorazepam in rabbit plasma. Chromatographic separation was performed on a C18 column using methanol-150 nM sodium acetate (62.5:37.5, v/v) as the mobile phase at the flow rate of 0.2 mL min?1. The retention times for lorazepam and diazepam (internal standard) were 6 and 10 min, respectively. Quantitative analysis was operated in selected ion monitoring (SIM) and positive ion mode using target ions at [M + H]+ m/z 284.9 for diazepam and [M + Na]+ m/z 342.9 for lorazepam, respectively. The lower limit of quantification (LLOQ) was 1.2 ng mL?1 and a linear range of 1.2–150 ng mL?1 with correlation coefficients (r 2) of 0.9968. The intra- and inter-day relative standard deviation was <5 and < 10%, respectively. The accuracy values were higher than 95%. The method is simple, sensitive and repeatable, and has been successfully applied to pharmacokinetics studies of lorazepam-loaded mocroemulsions after intranasal administration in rabbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号