首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The magnetoresistances of aluminum-doped zinc oxide thin films with thickness of 463.63, 203.03, and 66.85 nm were measured at low temperatures from 2.5 to 30 K. It is found that the samples exhibit negative magnetoresistance at all measuring temperatures. However, neither the three-dimensional nor the two-dimensional weak-localization theories can reproduce the behavior of the magnetoresistance. We find that the magnetoresistance of the three films can be well described by a semiempirical expression that takes into account the third order s-d exchange Hamiltonians describing a negative part and a two-band model for the positive contribution. This strongly suggests that the negative magnetoresistance in ZnO:Al film originates from the scattering of conduction electrons due to localized magnetic moments.  相似文献   

2.
We propose a new theoretical method to study galvanomagnetic effects in bounded semiconductors. The general idea of this method is as follows. We consider the electron temperature distribution and the electric potential as consisting of two terms, one of which represents the regular solution of the energy balance equation obtained from the Boltzmann transport equation at steady-state conditions and the Maxwell equation, while the other is the effect of the specimen size that is significant near the contacts (the boundary layer function). With the distribution of the electric potential at the contacts and the electron temperature distribution at the surface of the sample taken into account, we find that the magnetoresistance is different from the one in the standard theory of galvanomagnetic effects in boundless media. We show that, besides the usual quadratic dependence on the applied magnetic field B, the magnetoresistance can exhibit a linear dependence on B under certain conditions. We obtain new formulas for the linear and quadratic terms of the magnetoresistance in bounded semiconductors. This linear contribution of the magnetic field to the magnetoresistance is essentially due to the spatial dependence of the potential at the electric contacts. We also discuss the possibility of obtaining the distribution of the electric potential at the contacts from standard magnetoresistance experiments. Because the applied magnetic field acts differently on carriers with different mobilities, a redistribution of the electron energy occurs in the sample and thus, the Ettingshausen effect on the magnetoresistance must be considered in bounded semiconductors.  相似文献   

3.
We have measured the magnetoresistance in high magnetic field (up to 32T) and at low temperature (4.2K) of the amorphous alloy Cu57Zr43. The contribution to this magnetoresistance arising from electron-electron interactions is calculated from the theoretical models developed at time. We discuss the importance of superconducting fluctuations and the possibility to take them into account using the calculations of Larkin [1].  相似文献   

4.
5.
The temperature dependence of the resistivity and magnetic moment of La0.85Ba0.15MnO3 and La0.85Sr0.15MnO3 manganite single crystals in magnetic fields up to 90 kOe is investigated. Analysis of the experimental results shows that the magnetoresistance of lanthanum manganites far from the Curie temperature T C can be described quantitatively by the s-d model normally used for ferromagnets and taking into account only the exchange interaction between the spins of charge carriers and magnetic moments. These data also show that the features of lanthanum manganites responsible for colossal magnetoresistance (CMR) are manifested in a narrow temperature interval δT ≈ 20 K near T C. Our results suggest a CMR mechanism analogous to the mechanism of giant magnetoresistance (GMR) observed in Fe/Cr-type multilayers with nanometer layer thickness. The nanostratification observed in lanthanum manganites and required for GMR can be described taking into account the spread in T C in the CMR range δT.  相似文献   

6.
The effect of various deposition conditions and after-growth protocols on the magnetic and transport properties of Sr2FeMoO6 films has been explored. It is found that the saturation magnetization and the magnetoresistance (MR) are dominated by the degree of cationic order, and the strain effects are clearly evidenced in a lower TC. The after-growth annealing of the films and the deposition of a buffer layer has been found to relax the film strains. This translates into a clear increase of the measured low-field magnetoresistance ratios.  相似文献   

7.
It is experimentally established that the magnetoresistance of a Fex(SiO2)1?x nanocomposite (x≈0.6) in a strong magnetic field is described by a logarithmic function of the field strength. This field dependence is inconsistent with the well-known theory of the giant magnetoresistance in ferromagnetic nanocomposites. A model is developed according to which the unusual behavior of the magnetoresistance is explained by nonsphericity of the material grains, exhibiting a broad variety of shapes. The experimental results agree with conclusions and predictions of the proposed model.  相似文献   

8.
The magnetoresistance and magnetization of single-crystal samples of rare-earth dodecaborides RB12 (R = Ho, Er, Tm, Lu) have been measured at low temperatures (1.8–35 K) in a magnetic field of up to 70 kOe. The effect of positive magnetoresistance that obeys the Kohler’s rule Δρ/ρ = f(ρ(0, 300 K)H/ρ(0, T)) is observed for the nonmagnetic metal LuB12. In the magnetic dodecaborides HoB12, ErB12, and TmB12, three characteristic regimes of the magnetoresistance behavior have been revealed: the positive magnetoresistance effect similar to the case of LuB12 is observed at T > 25 K; in the range T N T ≤ 15 K, the magnetoresistance becomes negative and depends quadratically on the external magnetic field; and, finally, upon the transition to the antiferromagnetic phase (T < T N ), the positive magnetoresistance is again observed and its amplitude reaches 150% for HoB12. It has been shown that the observed anomalies of negative magnetoresistance in the paramagnetic phase can be explained within the Yosida model of conduction electron scattering by localized magnetic moments. The performed analysis confirms the formation of spin-polaron states in the 5d band in the vicinity of rare-earth ions in paramagnetic and magnetically ordered phases of RB12 and makes it possible to reveal a number of specific features in the transformation of the magnetic structure of the compounds under investigation.  相似文献   

9.
A simple model of phase separation is used to study the magnetoresistance of manganites in the nonmetallic state. It is assumed that the phase separation corresponds to the emergence of small ferromagnetic metallic droplets (ferrons) in a nonconducting antiferromagnetic or paramagnetic medium, with the metallic phase concentration being far from the percolation threshold. The charge transfer is accomplished by way of electron jumps between droplets. The magnetoresistance in such a system is defined both by the variation of the volume of the metal phase and by the dependence of the probabilities of electron transitions on the magnitude of the magnetic field. It is demonstrated that, in the region of low magnetic fields, the magnetoresistance is quadratic with respect to the field and decreases with temperature by the T ?n law, where n takes values from 1 to 5 depending on the correlation between the parameters. In the high-field limit, the magnetoresistance increases abruptly with the volume of the metal phase. The crossover of the field dependence from quadratic to a stronger one may be accompanied by the emergence of a platean in the magnetoresistance. The correlation between the obtained results and the available experimental data is discussed.  相似文献   

10.
The magnetoresistance of dilute AuCr alloys (2.3–322 at.ppm) has been measured in a wide region of temperature (5-3K) and of magnetic field (up to 60 kG).The “modified Kohler's rule” was used to extract the spin dependent magnetoresistance (?M) from measured total magnetoresistance.The results has shown that, except for the most dilute specimen, ?M includes explicitly a positive component in addition to the ordinary negative magnetoresistance proportional to log (H/T). We have attributed this positive ?M to the effect of the interactions between the Cr impurities by taking consideration of the generalized phase shift expression of magnetoresistance proposed by Soultie.  相似文献   

11.
Resistive and magnetic measurements are made for La0.85Sr0.15MnO3. The dependence of resistivity on the applied magnetic field (10, 20, 30, and 50 kOe) and temperature (200–310 K) is analyzed using the s-d model and the obtained experimental data. The physical features that should be contained in models proposed to explain the colossal magnetoresistance of manganites with activation-type conductivity are determined. It is shown that the proposed mechanism associating the colossal magnetoresistance effect with phase separation into ferromagnetic and paramagnetic microregions near the Curie temperature has the necessary features.  相似文献   

12.
In this work, we report the behavior of electrical resistivity of SmB6 at temperatures between 2.2 and 70 K in pulsed magnetic fields up to 54 T. A strong negative magnetoresistance was detected with increasing magnetic field, when lowering the temperature in the range T<30 K. We show that the amplitude of negative magnetoresistance reaches its maximum dR/R~70% at B=54 T, in the vicinity of phase transition occurring in this strongly correlated electron system at TC~5 K. The crossover from negative magnetoresistance to positive magnetoresistance found at intermediate temperatures at T>30 K is discussed within the framework of exciton-polaron model of local charge fluctuations in SmB6 proposed by Kikoin and Mishchenko. It seems that these exciton-polaron in-gap states are influenced both by temperature and magnetic field.  相似文献   

13.
Single crystals of Nd0.7Pb0.3MnO3 with large crystal size were obtained by the flux growth. The temperature dependence of the resistivity and magnetoresistance was measured. It has been discovered that a phase transition occurs from a ferromagnetic-metal (FM) to a ferromagnetic-insulator (FI) phase at 120 K, below the Curie temperature. At the Curie temperature, the samples exhibit a larger value of magnetoresistance (MR) than polycrystalline samples. The second peak of the magnetoresistance has been observed on MR(T) curve below the Curie temperature. The transition properties and magnetoresistance behavior were discussed.  相似文献   

14.
We investigated the in-plane magnetoresistance and the Hall effect of high-quality Bi2Sr2CuOx single crystals with T c (midpoint) = 3.7–9.6 K in dc magnetic fields up to 23 T. For T < 10 K, the crystals show the classical positive magnetoresistance. Starting at T ≈ 14 K, an anomalous negative magnetoresistance appears at low magnetic fields; for T ≥ 40 K, the magnetoresistance is negative in the whole studied range of magnetic fields. Temperature and magnetic field dependences of the negative-magnetoresistance single crystals are qualitatively consistent with the electron interaction theory developed for simple semiconductors and disordered metals. As is observed in other cuprate superconductors, the Hall resistivity is negative in the mixed state and changes its sign with increasing field. The linear T-dependence of cotθH for the Hall angle in the normal state closely resembles that of the normal-state resistivity as expected for a Fermi liquid picture.  相似文献   

15.
A series of Fe3O4 particles with different size have been obtained by mechanical ball milling from t=0-450 h. Crystal structure and microstructure of the samples are analyzed by XRD and SEM. An emphasis has been placed on magnetic and transport properties. The experimental results indicate that the sample t=350 exhibits an enhancement of magnetoresistance (MR) comparing with initial powder compress sample (t=0). The low-field magnetoresistance reaches MR=−6.04% at Verwey temperature 120 K and MR=−2.54% at 290 K. Thermal behavior TGA analysis and investigation of magnetic properties have revealed that there is an oxide layer on surface of Fe3O4 particles. It is considered that the enhanced magnetoresistance can be taken into account in terms of spin-dependent tunneling effect between Fe3O4 particles.Temperature dependence of magnetization and resistivity are measured in order to study electrical and magnetic behavior near Verwey transition. In addition, we also discuss ball milling time dependence of coercivity Hc and specific magnetization Ms of these samples.  相似文献   

16.
The effect of high pressure on electron transport and on the field dependence of the transverse magnetoresistance has been studied in a hybrid nanocomposite based on the Zn0.1Cd0.9GeAs2 matrix and MnAs clusters. A record high negative magnetoresistance of ~74% is formed near a pressure-induced structural transition (P≈ 3.5 GPa). The considered scattering mechanisms include both the contribution from MnAs clusters at relatively low pressures (up to 0.7 GPa) and spin-dependent scattering by localized magnetic moments in the Mn-substituted structure of the matrix in the region of the structural transition. The presence of the positive magnetoresistance region associated with the two-band transport model in the high-pressure phase, as well as the large negative magnetoresistance, is described in the framework of the semiempirical Khosla–Fischer expression.  相似文献   

17.
The magnetoresistance of two-dimensional electron and hole gases in MOS structures onpSi (100) was studied in inversion and accumulation regimes, respectively, measurements being made without contacts using a new experimental technique. In the magnetic field (h < 7 T) parallel to the sample surface the positive magnetoresistance was established to depend on a combination H/Tα (α ≈ 0.5, 1.7 ? T ? 4.2 K), that is unexplainable in terms of modern theories of electron localization and electron-electron interaction. In the perpendicular field, the magnetoresistance of p-accumulation layer is positive and comparable in magnitude with that in the parallel field.  相似文献   

18.
The La1.32Sr1.68Mn2O7 layered manganite system has been studied by the low temperature electrical resistance and magnetoresistance under hydrostatic pressure up to 25 kbar. We have observe both, a Curie temperature (TC) and a metal-insulator transition (TMI) at 118 K in the ambient pressure. The applied pressure shifts the TMI to higher temperature values and induces a second metal-insulator transition (T2MI) at 90 K, in the temperature dependence of resistivity measurements. Also, the pressure suppresses the peak resistance abruptly at TC. When an external field of 5 T is applied, we have observed a large negative magnetoresistance of 300% at the transition temperature and a 128% at 4.5 K. However, the increased pressure decreases the magnetoresistance ratio gradually. When the pressure reaches its maximum available value of 25 kbar, the magnetoresistance ratio decreases at a rate of 1.3%/kbar. From our experimental results, the decrease of magnetoresistance ratio with pressure is explained by the pressure induced canted spin state which is not favor for the spin polarized intergrain tunneling in layered manganites.  相似文献   

19.
The hysteretic behavior of the magnetoresistance R(H) of granular high-temperature superconductors (HTSCs) of the Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O, and La-Sr-Cu-O classical systems is investigated for transport current densities lower and higher than the critical density (at H = 0). All systems exhibit universal behavior of the width of the magnetoresistance hysteresis loop: independence of transport current under identical external conditions. This means that flux trapping in HTSC grains is the main mechanism controlling the hysteretic behavior of the magnetoresistance of granular HTSCs, while pinning of Josephson vortices in the intragranular medium makes no appreciable contribution to the formation of magnetoresistance hysteresis (when transport current flows through the sample). Experimental data on relaxation of residual resistance after the action of a magnetic field also confirm this conclusion.  相似文献   

20.
The electrical resistance of Gd x Mn1 ? x S solid solutions with x = 0.1, 0.15, and 0.2 has been measured at magnetic field H = 0.8 T and at zero magnetic field within the 100 K < T < 550 K temperature range. The magnetoresistance peak is observed above room temperature. On heating, the composition with x = 0.2 exhibits the change of magnetoresistance sign from positive to negative and the magnetoresistance peak near the transition to the magnetically ordered state. The experimental data are interpreted in the framework of the model involving the orbital ordering of electrons and the arising electrical polarization leading to the changes in the spectral density of states for electrons in the vicinity of the chemical potential in the applied magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号