首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A general practice in bioanalysis is that, whatever the biological matrix the analyte is being quantified in, the validation is performed in the same matrix as per regulatory guidelines. In this paper, we are presenting the applicability of a validated LC‐MS/MS method in rat plasma for JI‐101, to estimate the concentrations of JI‐101 in various tissues that were harvested in a rat tissue distribution study. A simple protein precipitation technique was used to extract JI‐101 and internal standard from the tissue homogenates. The recovery of JI‐101 in all the matrices was found to be >70%. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI‐101 and 180.1 → 110.1 for internal standard. The linearity range was 5.02–4017 ng/mL. The JI‐101 levels were quantifiable in the various tissue samples harvested in this study. Therefore, the use of a previously validated JI‐101 assay in plasma circumvented the tedious process of method development/validation in various tissue matrices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A highly sensitive, rapid assay method has been developed and validated for the estimation of adenosine in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electro‐spray ionization in the positive‐ion mode. The assay procedure involves extraction of adenosine and phenacetin (internal standard, IS) from rat plasma with a simple protein precipitation extraction process. The method was validated using rat plasma with extinguished adenosine endogenous levels. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.50 mL/min on an Atlantis dC18 column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 268 → 136 for adenosine and 180 → 110 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.48 ng/mL and the linearity range extended from 0.48 to 1210 ng/mL. The intra‐ and inter‐day precisions were in the ranges 2.32–12.7 and 4.01–9.40%, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive, rapid assay method has been developed and validated for the estimation of nobiletin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of nobiletin and citalopram (internal standard, IS) from rat plasma with liquid–liquid extraction. Chromatographic separation wa s achieved using an isocratic mobile phase (0.2% formic acid–acetonitrile, 20:80, v/v) at a flow rate of 0.6 mL/min on an Atlantis dC18 column (maintained at 40 ± 1 °C) with a total run time of 2.0 min. The MS/MS ion transitions monitored were 403.2 → 373.0 for nobiletin and 325.2 → 109.0 for IS. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range extended from 0.05 to 51.98 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.96–14.3 and 6.21–12.1, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A highly sensitive and rapid bioanalytical method has been developed and validated for the estimation of indomethacin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of indomethacin and phenacetin (internal standard, IS) from rat plasma with acetonitrile. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 357.7 → 139.1 for indomethacin and 180.20 → 110.10 for IS. Method validation and pharmacokinetic study plasma analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.51 ng/mL and the linearity was observed from 0.51 to 25.5 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.00–10.2 and 5.88–9.80%, respectively. This novel method has been applied to an oral pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive, rapid assay method has been developed and validated for the simultaneous estimation of tolmetin (TMT) and MED5 in human plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. A simple solid‐phase extraction process was used to extract TMT and MED5 along with mycophenolic acid (internal standard, IS) from human plasma. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.50 mL/min on an X‐Terra RP18 column with a total run time of 2.5 min. The MS/MS ion transitions monitored were 258.1 → 119.0 for TMT, 315.1 → 119.0 for MED5 and 321.2 → 207.0 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 20 ng/mL and the linearity was observed from 20 to 2000 ng/mL, for both the anlaytes. The intra‐day and inter‐day precisions were in the range 3.27–4.50 and 5.32–8.18%, respectively for TMT and 4.27–5.68 and 5.32–8.85%, respectively for MED5. This novel method has been applied to a clinical pharmacokinetic study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra‐ and inter‐day precision were in the ranges of 4.73–11.7 and 5.83–8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A highly sensitive and rapid assay method has been developed and validated for the estimation of S‐(−)‐raclopride (S‐RCP) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive ion mode. The assay procedure involves a simple liquid–liquid extraction technique for extraction of S‐RCP and phenacetin (internal standard, IS) from rat plasma. Chromatographic separation was achieved with 0.2% formic acid : acetonitrile (80:20, v/v) at a flow rate of 0.30 mL/min on a Phenomenex Prodigy C18 column with a total run time of 4.5 min. The MS/MS ion transitions monitored were 347.2 → 112.1 for S‐RCP and 180.1 → 110.1 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range was extended from 0.05 to 152 ng/mL in rat plasma. The intra‐day and inter‐day precisions were 0.23–10.5 and 3.74–7.29%, respectively. This novel method was applied to a pharmacokinetic study of S‐RCP in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI-101 in human plasma and urine using LC-MS/MS-ESI in the positive-ion mode. The assay procedure involves extraction of JI-101 and alfuzosin (internal standard, IS) from human plasma/urine with a solid-phase extraction process. Chromatographic resolution was achieved on two Zorbax SB-C(18) columns connected in series with a PEEK coupler using an isocratic mobile phase comprising acetonitrile-0.1% formic acid in water (70:30, v/v). The total run time was 2.0 min. The MS/MS ion transitions monitored were 466.20 → 265.10 for JI-101 and 390.40 → 156.10 for IS. The method was subjected to rigorous validation procedures to cover the following: selectivity, sensitivity, matrix effect, recovery, precision, accuracy, stability and dilution effect. In both matrices the lower limit of quantitation was 10.0 ng/mL and the linearity range extended from ~10.0 to 1508 ng/mL in plasma or urine. The intra- and inter-day precisions were in the ranges 1.57-14.5 and 6.02-12.4% in plasma and 0.97-15.7 and 8.66-10.2% in urine. This method has been successfully applied for the characterization of JI-101 pharmacokinetics in cancer patients.  相似文献   

11.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive, rapid assay method was developed and validated for the estimation of lorglumide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in positive‐ion mode. The assay procedure involves extraction of lorglumide and phenacetin (internal standard, IS) from mouse plasma with simple protein precipitation. Chromatographic separation was achieved using an isocratic mobile (0.2% formic acid solution–acetonitrile, 20:80, v/v) at a flow‐rate of 0.5 mL/min on an Atlantis dC18 column maintained at 40 °C with a total run time of 4.0 min. The MS/MS ion transitions monitored were 459.2 → 158.4 for lorglumide and 180.1 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.42 ng/mL and the linearity range extended from 0.42 to 500 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 1.47–10.9 and 3.56–7.53, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

15.
A highly sensitive, rapid assay method has been developed and validated for the analysis of hyperoside in beagle dog plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of hyperoside and ginsenoside Re (IS) from beagle dog plasma. Chromatographic separation was carried out on an Agilent Zorbax XDB‐C18 (100 × 2.1 mm, 1.8 µm) column by isocratic elution with acetonitrile and water (50:50, v/v) at a flow rate of 0.25 mL/min with a total run time of 2.0 min. The MS/MS ion transitions monitored were 464.4 → 463.4 for hyperoside and 947.12 → 969.60 for IS. Linear responses were obtained for hyperoside ranging from 10 to 5000 ng/mL. The intra‐and inter‐day precisions (RSDs) were <5.38 and 3.39% and the extraction recovery ranged from 94.39 to 100.78% with an RSD <3.82%. Stability studies showed that hyperoside was stable in preparation and analytical process. The results indicated that the validated method was successfully used to determine the concentration–time profiles of hyperoside. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive, rapid assay method has been developed and validated for the estimation of montelukast (MTK) in human plasma with liquid chromatography coupled to tandem mass spectrometry with electro spray ionization in the positive‐ion mode. Liquid–liquid extraction was used to extract MTK and amlodipine (internal standard, IS) from human plasma. Chromatographic separation was achieved with 10 mm ammonium acetate (pH 6.4): acetonitrile (15:85, v/v) at a flow rate of 0.50 mL/min on a Discovery HS C18 column with a total run time of 3.5 min. The MS/MS ion transitions monitored were 586.10 → 422.10 for MTK and 409.20 → 238.30 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.25 ng/mL and linearity was observed from 0.25 to 800 ng/mL. The intra‐day and inter‐day precisions were 5.97–8.33 and 7.09–10.13%, respectively. This novel method has been applied to a pharmacokinetic study of MTK in humans. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive, rapid assay method for estimating ivabradine in human plasma has been developed and validated using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The procedure involved extraction of ivabradine and the internal standard (IS) from human plasma by solid‐phase extraction. Chromatographic separation was achieved using an isocratic mobile phase (0.1% formic acid–methanol, 60:40, v/v) at a flow rate of 1.0 mL/min on an Aglient Eclipse XDB C8 column (150 × 4.6 mm, 5 µm; maintained at 35°C) with a total run time of 4.5 min. Detection was achieved using an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 3200 triple‐quadrupole mass spectrometer. The MS/MS ion transitions monitored were 469–177 for ivabradine and 453–177 for IS. Method validation was performed according to Food and Drug Administration guidelines, and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 0.1–200 ng/mL. The lower limit of quantitation achieved was 0.1 ng/mL. Intra‐ and inter‐day precisions were in the range of 1.23–14.17% and 5.26‐8.96%, respectively. Finally, the method was successfully used in a pharmacokinetic study that measured ivabradine levels in healthy volunteers after a single 5 mg oral dose of ivabradine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A highly sensitive, rapid assay method has been developed and validated for the estimation of abiraterone (ART) in rat and human plasma with liquid chromatography coupled to tandem mass spectrometry and electrospray ionization in the positive-ion mode. The assay procedure involves extraction of ART and phenacetin (internal standard, IS) from rat and human plasma with a simple protein precipitation extraction process. Chromatographic separation was achieved using an isocratic mobile (10 mm ammonium acetate:acetonitrile, 10:90, v/v) at a flow-rate of 0.70 mL/min on an Atlantis dC(18) column maintained at 40 °C with a total run time of 3.5 min. The MS/MS ion transitions monitored were 350.3 → 156.0 for ART and 180.2 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.20 ng/mL and the linearity range extended from 0.20 to 201 ng/mL. The intra- and inter-day precisions were in the ranges 2.39-10.4 and 4.84-9.53% in rat plasma and 3.82-10.8 and 6.97-8.94% in human plasma.  相似文献   

19.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A highly sensitive, specific and enantioselective assay has been developed and validated for the estimation of TAK‐700 enantiomers [(+)‐TAK‐700 and (?)‐TAK‐700] in rat plasma on LC‐MS/MS‐ESI in the positive‐ion mode. Liquid–liquid extraction was used to extract (±)‐TAK‐700 enantiomers and IS (phenacetin) from rat plasma. TAK‐700 enantiomers were separated using methanol and 5 mm ammonium acetate (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralcel OJ‐RH column. The total run time was 7.0 min and the elution of (+)‐TAK‐700, (?)‐TAK‐700 and IS occurred at 3.71, 4.45 and 4.33 min, respectively. The MS/MS ion transitions monitored were m/z 308.2 → 95.0 for TAK‐700 and m/z 180.2 → 110.1 for IS. The standard curves for TAK‐700 enantiomers were linear (r2 > 0.998) in the concentration range 2.01–2015 ng/mL for each enantiomer. The inter‐ and intra‐day precisions were in the ranges 3.74–7.61 and 2.06–8.71% and 3.59–9.00 and 2.32–11.0% for (+)‐TAK‐700 and (?)‐TAK‐700, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method was applied to the study of stereoselective oral pharmacokinetics of (+)‐TAK‐700 and it was unequivocally demonstrated that (+)‐TAK‐700 does not undergo chiral inversion to its antipode in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号